A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin

Sem Tamara, Vojtech Franc, and Albert J. R. Heck

*Biological Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; and †Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands

Edited by Carol Robinson, University of Oxford, Oxford, United Kingdom, and approved May 18, 2020 (received for review February 11, 2020)

The serum haptoglobin protein (Hp) scavenges toxic hemoglobin (Hb) leaked into the bloodstream from erythrocytes. In humans, there are two frequently occurring allelic forms of Hp, resulting in three genotypes: Homozygous Hp 1-1 and Hp 2-2, and heterozygous Hp 2-1. The Hp genetic polymorphism has an intriguing effect on the quaternary structure of Hp. The simplest form, Hp 1-1, forms dimers consisting of two α1β units, connected by disulfide bridges. Hp 2-1 forms mixtures of linear (α1β)n oligomers (n > 1) and Hp 2-2 occurs in cyclic (α2β)n oligomers (n > 2). Different Hp genotypes bind Hb with different affinities, with Hp 2-2 being the weakest binder. This behavior has a significant influence on Hp’s antioxidant capacity, with potentially distinctive personalized clinical consequences. Although Hp has been studied extensively in the past, the finest molecular details of the observed differences in interactions between Hp and Hb are not yet fully understood. Here, we determined the full proteoform profiles and proteoform assemblies of all three most common genetic Hp variants. We combined several state-of-the-art analytical methods, including various forms of chromatography, mass spectrometry, and different tiers of mass spectrometry, to reveal how the tens to hundreds distinct proteoforms and their assemblies influence Hp’s capacity for Hb binding. We extend the current knowledge by showing that Hb binding does not just depend on the donor’s genotype, but is also affected by variations in Hp oligomerization, glycosylation, and proteolytic processing of the Hp α-chain.

Significance

Haptoglobin (Hp) is one of the most abundant plasma proteins; it binds with high affinity to hemoglobin (Hb). Thereby Hp protects against the toxic effects of the heme when Hb leaks into plasma from damaged red blood cells. Therefore, serum Hp is an important antioxidant and a clinically important protein, often used as a protein biomarker. Here, we address in detail what proteoforms and proteoform assemblies co-occur in serum, and show how they differ in individuals with distinct genotypes. Our data, obtained by a range of state-of-the-art analytical methods, reveal in unprecedented detail how these hundreds of Hp proteoforms influence the scavenging of Hb through several distinctive molecular features of Hp genotypes.

Author contributions: S.T., V.F., and A.J.R.H. designed research; S.T. and V.F. performed research; A.J.R.H. contributed new reagents/analytic tools; S.T., V.F., and A.J.R.H. analyzed data; and S.T., V.F., and A.J.R.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The raw and processed data used in this work have been uploaded to Figs hare (https://doi.org/10.6084/m9.figshare.12098592.v1).

1S.T. and V.F. contributed equally to this work.

2To whom correspondence may be addressed. Email: a.j.r.heck@uu.nl.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002483117/-/DCSupplemental.

haptoglobin | genetic polymorphism | hybrid mass spectrometry | protein glycosylation | proteolytic processing

A round 1900 Karl Landsteiner discovered the ABO blood group system, which resulted in the description of the first human genetic polymorphism (1). Identification of the genetic polymorphism of the histo-blood group ABO system glycosyltransferases, which control blood group antigen expression, has proven to be of essential importance, not only in transfusion medicine but also in the pathophysiology of hemolytic diseases of newborn babies and organ transplantation (2). Subsequently, genetic polymorphisms have been described for many other proteins (3), including several highly abundant plasma proteins, such as antitrypsin (4, 5), fetuin (6), and haptoglobin (Hp) (7, 8). Hp represents a particularly interesting case. It exists in two allelic forms in the human population, Hp1 and Hp2 (9–11) (SI Appendix, Fig. S1). Based on the most recent findings on the evolutionary origins of the Hp polymorphism, Hp1 likely arose from recurrent deletions in Hp2 (12). Hp is among the 10 most abundant proteins in serum (13, 14) with a significant function to clear toxic hemoglobin (Hb) (15, 16) through high-affinity binding to the macrophage scavenger receptor CD163 (7), but various other roles have been proposed as a potent antioxidant (12, 17) and in the immune response (18). Notably, one of the most striking effects of the Hp polymorphism resides in the structural heterogeneity represented by the existence of Hp in different oligomeric states, depending on the Hp genotype (19, 20). From a structural point of view, the Hp 1-1 homozygote allele type represents the simplest form, exhibiting a tetra-chain structure composed of two α1- (molecular mass ∼9.2 kDa) and two β- (molecular mass ∼35 kDa) chains linked by disulfide bonds (21). The β-chain (containing a serine protease domain, SP) is common to all Hp genotypes, while the α-chain (containing the complement component control protein domain, CCP) has two (genetic) variants, α1 and α2. The α2-chain (molecular mass ∼15.9 kDa) has a high degree of sequence identity with α1, albeit with a repeated CCP domain (22). Importantly, the α1-chain possesses two interlinking Cys residues, one at the C terminus connecting with a β-chain (αβ unit), and the other one at the N terminus linking another αβ unit that forms the above-mentioned tetra-chain structure in Hp 1-1 (2 × αβ). The α2-chain contains a repeated CCP domain with three extra cysteines and therefore can interact with an additional αβ unit. This feature has a crucial effect on the quaternary structures of the other two Hp genotypes, the 2-1 heterozygote and the 2-2 homozygote. Structural studies have confirmed that Hp 2-1 forms linear oligomers of α2β units, in which αβ always forms the terminal units of the Hp protein oligomer. Hp 2-2 builds cyclic structures consisting of multiple α2β units (23). The complex structural heterogeneity of Hp implies that also its biosynthesis may stand out compared to other common serum proteins. Indeed, Hp synthesis is unusual as its proform is cleaved already in the endoplasmic reticulum (ER) before it enters the Golgi (24, 25), where most of the secretory proteins
are typically cleaved (Fig. 1). Hp is synthesized predominantly in hepatocytes as a single 45-kDa polypeptide, which rapidly forms dimers through disulfide bond formation (26). Shortly after, the α-chain of Hp is proteolytically cleaved C-terminal to the Arg102 residue (Arg161 in Hp2), which is subsequently removed by a so far unknown plasma carboxypeptidase (27), resulting in the final tetrameric form, Hp 1-1. The initial cleavage after Arg102/161 is thought to be mediated by the C1 complement C1r-like protein (C1r-LP) that resides in the ER (28). A comparison of the amino acid sequences in proximity to the cleavage site in proforms of Hp, C1s, and C1r shows a remarkable similarity. This sequence resemblance pinpointed an evolutionary relationship of Hp to these serine proteases involved in activation of the complement system (29). The biological relevance of this proteolytic cleavage of the Hp proform was demonstrated to be essential for Hb binding (30, 31).

Next to the diversity originating from distinct genotypes and processing, further variety in Hp stems from posttranslational modifications (PTMs), primarily glycosylation (32–34). Protein glycosylation is one of the most complex PTMs and dramatically influences the structural and functional properties of proteins. Hp possesses four N-glycosylation sites on the β-chain, located at Asn184, Asn207, Asn211, and Asn241 occupied by complex type N-glycans with a varying number of antennae, which may be fucosylated and sialylated (35, 36). In healthy individuals, the glycosylation sites, Asn184, Asn207, and Asn241, carry predominantly sialylated biantennary N-glycans, while Asn211 is primarily occupied by sialylated triantennary complex N-glycan. Fucosylation is primarily located on the antennae of the core fucosylated glycan. The extraordinary ability of Hp to bind Hb is often used to isolate Hp from plasma. Recently, it has been reported that a small fraction of native Hp binds somewhat weaker to Hb compared to the tightly bound Hp fraction. This weakly bound Hp exhibited an altered glycosylation pattern (47), with relatively more branching complex glycans, somewhat less decorated with α2-6 linked sialic acid residues. The glycosylation effect was further investigated by Wu et al. (48, 49), who combined native MS and glycoproteomics to examine the impact of Hp glycosylation microheterogeneity on interactions with Hb and lectins. The authors revealed that N-glycan branching attenuates Hp–Hb binding affinity, and in contrast, fucosylation stabilizes the Hp–Hb binding. Overall, these studies indicate that N-glycosylation of Hp genotypes has already been reflected in clinical practice (41), mainly regarding the difficulty in the precise determination of Hp levels in individuals with different genotypes, it has not yet been addressed how such genetic differences may affect the glycosylation patterns and protein structure. We recently contributed to this discussion by demonstrating with MS that a genetic polymorphism substantially influences the proteoform profile of another plasma protein, human fetuin (42).

The in-tandem assembled CCP domains in the α2-chains of Hp2 have several crucial functional consequences. The best-established function of Hp is its binding to free Hb leaked from red blood cells (32). This heme detoxifying process in plasma mitigates oxidative stress and recycles iron within the body. Although still controversial (43), it has been proposed that the stoichiometry of the binding between Hp and Hb is identical for all forms of Hp and equals 1:1. That is, one α chain of Hp binds one α chain of Hb (22, 44, 45). In theory, 1 mole of the homozygote Hp 1-1 contains fewer binding sites (fewer α units) for Hb than the more complex oligomeric structures occurring in the heterozygote 2-1 and homozygote 2-2 genotypes. From that point of view, it is somewhat surprising that Hp 1-1 has been found to exhibit superior binding to Hb when compared to Hp 2-1 and 2-2 (17, 44). A molecular basis for the observed tight binding of Hp 1-1 to Hb (46) has been revealed by the X-ray structural analysis of a porcine Hp–Hb complex (21). However, an explanation for the apparent lower affinity of Hp 2-1 and 2-2 to Hb is currently missing. In a compensatory manner, it has been observed that protein assemblies of Hb with highly oligomeric Hp 2-2 exhibit higher functional affinity for the CD163 hemoglobin scavenger receptor than do complexes of Hb with dimeric Hp 1-1 (7).

The extraordinary ability of Hp to bind Hb is often used to isolate Hp from plasma. Recently, it has been reported that a small fraction of native Hp binds somewhat weaker to Hb compared to the tightly bound Hp fraction. This weakly bound Hp exhibited an altered glycosylation pattern (47), with relatively more branching complex glycans, somewhat less decorated with α2-6 linked sialic acid residues. The glycosylation effect was further investigated by Wu et al. (48, 49), who combined native MS and glycoproteomics to examine the impact of Hp glycosylation microheterogeneity on interactions with Hb and lectins. The authors revealed that N-glycan branching attenuates Hp–Hb binding affinity, and in contrast, fucosylation stabilizes the Hp–Hb binding. Overall, these studies indicate that N-glycosylation...
might fine-tune Hp and Hb interactions, although they focus exclusively on Hp 1-1. Here, we also applied Hp–Hb-binding assays to investigate properties of Hp oligomers isolated from single donors of all three of the most common genotypes and complement the acquired data with an in-depth analysis of co-occurring Hp proteoforms and proteoform assemblies. Our data, obtained by interferometric scattering microscopy (mass photometry) (50), revealed apparent differences in the Hb binding among different Hp oligomers originating from the three Hp genotypes. In-depth characterization of the Hp proteoform profiles by combining native separation methods such as gel electrophoresis, size-exclusion chromatography (SEC), ion-exchange chromatography (IEX), and state-of-the-art integrative MS approaches (51, 52) revealed hundreds of different proteoforms and proteoform assemblies. The data showed distinctive glycosylation profiles for different genotypes and oligomeric states. Additionally, we discovered a trend in the proteolytic processing of Hp that correlates well with the observed differences in Hb binding among the distinct Hp oligomers. Overall, our findings unravel a wealth of molecular details that fine-tune Hp–Hb interactions, laying the groundwork for a full explanation of proteogenotype-specific binding of Hp to Hb.

Results

The binding of Hp to dimeric oxygenated Hb is one of the strongest known noncovalent interactions occurring in human plasma with a reported equilibrium dissociation constant (K_d) of around 10^{-15} M (53). The effect of this interaction, formation of Hp–Hb complexes, has been studied for decades and, therefore, it may be surprising that several molecular details regulating these interactions remain elusive. A likely explanation lies in the sheer structural diversity of Hp originating from the coexistence of genetic variants and the presence of multiple oligomers, all decorated with a plethora of heterogeneous PTMs. Thus, the Hp–Hb complex is represented not just by a single configuration but by an entire class of different conformations and oligomeric states composed of a varying number of Hp monomers, also highly dependent on the Hp genotype. Human Hp is typically present in red blood cells as a hetero-tetramer Hb(αβ)4. However, this tetramer dissociates into two αβ heterodimers after entering plasma, where Hp captures Hb very efficiently (54). In the remainder, we refer to this binding Hp (αβ) unit as an Hp monomer. Although each of us needs Hp to scavenge Hb, this is done in a very personal manner, depending on each individual’s genotype. Therefore, here we set out to investigate the occurrence and properties of all Hp proteoforms with respect to their genotype. We obtained Hp from homozygote donors carrying either the Hp 1-1 genes or the Hp 2-2 genes, and Hp from a single heterozygote donor carrying Hp 2-1. For some of the experiments requiring more material, we used a commercially available Hp mixed type (termed Hp M), acquired from multiple donors, which turned out to be mostly Hp 2-1, with just traces of other Hp genotypes. We clearly state in the text when this Hp M sample was used.

Mass Photometry Reveals Genotype-Specific Oligomerization Status of Hp and Stoichiometry of Hp–Hb Complexes. Most of the fundamental questions regarding Hp center around its primary function in blood, capturing Hb through the formation of tight Hp–Hb complexes. First, we investigated whether there are any differences in binding stoichiometry among the Hp–Hb complexes formed in the serum of donors of the three major genotypes of Hp: 1-1, 2-2, and 2-1. All three genetic variants of Hp were first separated and visualized by blue native-gel electrophoresis (Fig. 2A). While Hp 1-1 appears as a single band, Hp 2-2 and Hp 2-1 (here represented by Hp M) were detected as series of resolved bands corresponding to the different Hp oligomers. Our native-gel results resemble well previously reported data, showing similar distributions of the resolved bands of the distinct Hp oligomers (23). Incubating these Hp samples in molar excess of Hb compared to the monomer of Hp resulted in native gels with a clear mass shift of all bands toward higher masses, suggesting the extensive formation of Hp–Hb complexes. However, sample complexity and insufficient resolution did not allow us to estimate relative quantities and to determine binding stoichiometries of Hp oligomers accurately.

Next, we used the recently introduced mass photometry technology, which has great potential in characterizing protein–protein interactions in solution, including the quantitative detection and analysis of binding stoichiometries (50). We applied mass photometry to quantify the relative abundance of each detected Hp oligomer and assess their binding stoichiometries with Hb. Fig. 2 B–D display the quantitative distributions of resolved Hp oligomers before and after incubation with Hb. In all cases, we observed a homogeneous shift of all peaks to higher masses in the mass photometry profiles after incubating Hp with Hb (see also SI Appendix, Fig. S2A). Therefore, we conclude that the binding stoichiometry is the same for all Hp monomers in each of the abundant Hp oligomers, independent of genotype; for example, a dimer of Hp 1-1 binds two dimers of Hb(αβ), and a pentamer of Hp 2-1 binds five dimers of Hb(αβ), one per monomer of Hp (SI Appendix, Fig. S2B). This observation is in good agreement with previous assessments of these stoichiometries (22, 44, 45). Additionally, we determined that the desialylation of the Hp samples by using neuraminidase does not affect the stoichiometry of Hb binding. Although our data indicate that sialylation does not affect Hp–Hb binding substantially, the sialic acid linkages on the N-glycans of Hp can be functionally relevant, for example in the uptake of Hp via the asialoglycoprotein receptor (55). The molecular masses of all Hp assemblies recorded by mass photometry were in good agreement with theoretically expected masses with an average mass error of approximately ±4.1% (SI Appendix, Fig. S2 C and D and Table S1). This error is higher compared to mass photometry measurements of nonglycosylated proteins, for which typically a 2% mass accuracy and 1-kDa mass precision have been determined (50). Because of a multitude of coexisting glycoproteoforms with subtle mass differences, the mass distribution of any Hp oligomer spans more than 4 kDa. Therefore, we expect that the heterogeneity of Hp broadens the mass distribution in our mass photometric measurements, which subsequently influences the determination of the mass accuracy and precision.

Hb-Binding Assays Reveal Differences in Hb Binding among Different Hp Oligomers. Although the binding affinity between Hp and Hb is known to be particularly high, some minor variations in the binding strength within and between the Hp genotypes have been reported (8, 43, 48). To investigate such variations, we combined mass photometry with a well-described Hb-binding assay, in which we fractionated all three Hp samples by using an Hb-agarose gel column, following the protocol of Wu et al. (48), who performed this earlier, albeit for Hp 1-1 alone. Subsequently, we obtained mass photometry profiles for Hb-bound and -unbound fractions and compared them to the mass profiles of the original unfractionated Hp (Fig. 2 E–H). Notably, we observed in both Hp 2-2 and 2-1 (represented by Hp M) clear changes in the mass distribution of Hp oligomers. In the unbound Hp 2-2 and 2-1 fraction, the relative abundance of the higher–molecular-mass Hp oligomers was increased compared to their original profiles (Fig. 2 E and F). Concurrently, the Hp-bound fraction was relatively enriched for lower–molecular-mass Hp oligomers in both genotypes (Fig. 2 G and H). These differences in the mass profiles suggest that lower-mass Hp oligomers have a higher affinity to Hb compared with higher-mass Hp oligomers. To further illustrate this point, the Hp 2-2 trimer, which comprises less than 10% of the total abundance in the
Fig. 2. Hp oligomerization and Hb binding for different Hp genotypes. (A) Blue native-gel analysis of Hp 1-1, Hp 2-2, and Hp 2-1, represented by Hp M, alone (Left) and upon incubation with Hb (Right). (B) Mass photometry profiles obtained for Hp 1-1 (blue) and Hp (1, 1)-Hb (red) with the determined average molecular mass indicated on the peak apex. (C and D) Mass photometry profiles of Hp 2-2 and Hp (2, 2)-Hb (C) and of Hp M and Hp(M)-Hb (D). The blue profiles represent Hp alone and the red profiles correspond to Hb-bound Hp. (E and F) Constructed overlay of mass photometry profiles obtained for Hp 2-2 (E) or Hp M (F) and their respective Hb-unbound fractions (gray) demonstrates the relative depletion of larger oligomers in the Hb-unbound fraction. (G and H) Constructed overlay of mass photometry profiles obtained for Hp (2, 2)-Hb (G) or Hp(M)-Hb (H) and their respective Hb-bound fractions demonstrate enrichment of smaller oligomers. A mass profile of Hb alone is depicted in dark red. See also SI Appendix, Fig. S2 for a more detailed overview of all Hp oligomer mass measurements by using mass photometry.
original unfraccionated Hp 2-2 mass profile, is nearly five-times enriched (47%) in the Hb-bound fraction, suggesting it has a higher affinity to Hb compared to the higher–molecular-mass Hp 2-2 oligomers (SI Appendix, Fig. S2E). All quantitative data, including fractional abundances of each Hp oligomer in all analyzed samples, are listed in SI Appendix, Tables S1 and S2. The previous findings that Hp 1-1 has a higher affinity for Hb than Hp 2-2 (8, 43) may, thus, stem from the fact that Hp 1-1 forms exclusively dimers while Hp 2-2 forms higher Hp oligomers. Notably, this claim is surrounded by some controversy (56, 57).

Characterizing Hp Proteoforms and Proteoform Assemblies by Integrative MS. The distinct mass photometry profiles obtained for native Hp oligomers in Hb-bound/unbound fractions demonstrated that lower–molecular-mass Hp complexes have a higher affinity to Hb compared to higher–molecular-mass Hp complexes. Up to now, we lack a clear explanation of this phenomenon. The X-ray structural models of the porcine Hp (1, 1)-Hb complex (21) and human Hp–Hb complex with an Hp–Hb receptor from Trypanosoma brucei brucei (58) provide the best insights so far into the molecular basis of the strong binding of Hp to Hb. Unfortunately, high-resolution structures of Hp oligomers and their complexes with Hb are not yet available. Moreover, it has been hypothesized that the microheterogeneity at the level of PTMs fine-tunes Hp–Hb complexation (48), which is more challenging to address with the current high-resolution structural biology methods that average over many particles. Distinctively, mass spectrometry enables charting of the wealth of proteoforms (59) and their assemblies by detecting subtle mass deviations, which stem from distinctive PTM patterns or sequence variations (60, 61). Here, we combined native and intact denaturing MS to characterize Hp oligomers from all three genotype variants.

To mass-analyze in depth each Hp oligomer, we first fractionated them by SEC (Fig. 3 A–C). While Hp 1-1 and Hp 2-2 samples were obtained commercially as purified proteins (Fig. 3 A and B) from genotyped donors, for Hp 2-1 we purified Hp oligomers directly from the serum of one individual (Fig. 3C). In the latter case, to separate the Hp 2-1 from copurified serum proteins, Hp-containing SEC fractions were further cleaned up by IEX. Before MS analysis, each fraction was treated with neuraminidase to remove sialic acid moieties, which are present in high abundance on the various N-glycans of Hp molecules. We observed that for reducing the complexity in the native MS spectra, desialylation was essential and helped us to discern between double fucosylation and sialylation since they have similar masses (i.e., 291.1 and 292.1 Da, respectively).

Fig. 3. Characterization of SEC separated Hp oligomers by high-resolution native MS, and in silico reconstruction based on denatured intact protein LC-MS data. (A and B) SEC chromatograms of Hp 1-1 and Hp 2-2, respectively, with the apparent molecular mass and oligomerization status annotated. (C) SEC profile of serum from a donor with Hp 2-1 genotype (black line). The abundance profile of Hp proteins (based on iBAQ [intensity-based absolute quantification] proteomics values) is displayed in blue. (D–F) High-resolution native MS spectra of desialylated Hp 2-2 (E) and Hp 2-1 (F) (black) and corresponding in-silico-generated spectra only for the most abundant charge states (red). (G) Annotation of peaks in the native MS spectrum of Hp 1-1 with integers corresponding to the base glycan composition and color denoting the number of terminal fucoses carried by Hp 1-1 (SI Appendix, Table S5). See also SI Appendix, Fig. S3 for annotations of the proteoforms of Hp 2-1 oligomers. (H) Cartoons of the complexes observed for Hp 1-1, Hp 2-2, and Hp 2-1 in the most abundant SEC fractions (A–C).
After desialylation, the native MS spectra of Hp revealed highly complex proteoform profiles for all measured samples, which could be prevalently attributed to the microheterogeneity of N-glycosylation. In addition to the accurate mass assignment of each detected Hp proteoform, high-resolution native MS spectra can confirm the overall composition of protein complexes (62). However, direct annotation of the complicated MS profiles of Hp turned out to be very challenging due to isobaric species or species with minute mass differences, which were present in these heavily glycosylated samples. One way to untangle such complex native MS spectra is by simulating them based on data from either peptide LC-MS (63) or intact protein mass measurements, where distinct denatured and reduced polypeptide chains are separated by LC and measured by MS (51). Here, we used the intact mass denaturing LC-MS analysis of Hp fractions to simulate and annotate the corresponding native MS spectra. In this approach, masses and abundances of the distinct Hp-β- and Hp-α-chains were determined and used for in silico construction of masses for Hp oligomers (SI Appendix, Tables S3 and S4). The upper panels of Fig. 3 D–F display the original native MS spectra of the most abundant Hp oligomers from the Hp 1-1, 2-2, and 2-1 genotypes, respectively, while the lower panels display the in silico constructed-native-like proteoform profiles for the most abundant charge state of each oligomer (see Material and Methods for details and Fig. 3H for corresponding representation of Hp oligomers).

The high correlation of the in silico reconstructed mass profiles with the native spectra (e.g., r = 0.96 for the Hp 1-1 dimer and r = 0.92 for the Hp 2-1 trimer) supports that this hybrid method is suitable for the comprehensive annotation of complex native MS spectra of heavily glycosylated Hp oligomers. An example of such a fully annotated native MS spectrum can be seen in Fig. 3G, where we visualize different glycopeptide profiles for the Hp 1-1 variant. Our data for Hp 1-1 agrees with the annotation provided by Wu et al. (48). In addition, this approach allowed us to reduce ambiguity and accurately determine the oligomeric state and composition of Hp oligomers in the SEC fractions of Hp 2-1. For example, without in silico-generated spectra, it would be challenging to determine that the Hp trimer in the SEC fraction 3 (Fig. 3C) had the (α1)2(β2) composition ruling out alternative possibilities (e.g., α1(α2)β2), which can also fit into the broad mass profiles observed. Simulation of the mass profiles for the Hp 2-1 trimer (α1)α2(β3), tetramer (α1)2(α2)β3, and pentamer (α1)3(α2)β3 are provided in the SI Appendix, Fig. S3. In summary, this hybrid MS approach allowed us to determine the oligomeric state of Hp complexes observed in each SEC fraction and provided a comprehensive list of tens to hundreds of Hp proteoforms with their PTM compositions (SI Appendix, Tables S5–S8). A more extensive description of the data processing pipeline used for the identification and simulation of the Hp native mass spectra is provided in SI Appendix, Fig. S4.

Posttranslational Processing of Hp Correlates with Its Higher-Order Structure and Hb Binding. The Hp monomer is composed of an α- and β-chain linked by a disulfide bridge, which after reduction results into an α1 or α2 chain exhibiting molecular masses of 9.2 kDa and 15.9 kDa, respectively (depending on the Hp genotype), and a β-chain with a molecular mass of 35 kDa (including the averaged mass of the N-glycans). Principally, all of these Hp chains and their proteoforms can be chromatographically separated and analyzed by MS. Initially, we used reverse-phase LC-MS that provided an excellent separation of the α- and β-chains (Fig. 4A). However, the reverse-phase chromatographic mechanism, based on hydrophobic interactions, did not allow for sufficient separation of the complex glycopeptide profiles of the β-chain (Fig. 4A, Inset). To further investigate glycosylation differences, we performed hydrophilic interaction chromatography (HILIC) using an amide-based stationary phase (64). By injecting desialylated and reduced Hp 1-1 and Hp 2-2 onto this HILIC system, we attained decent separation of Hp-β glycopeptide profiles based on their distinct glycosylation patterns (Fig. 4B). The high resolving power achieved by HILIC-LC-MS allowed us to detect distinct proteoforms per scan (Fig. 4B, Inset), enabling accurate mass determination. Intriguingly, the recorded HILIC-LC-MS data revealed significant differences in glycosylation patterns between the β-chains originating from Hp 1-1 and Hp 2-2. To further interpret the HILIC-LC-MS data, we performed mass matching of observed mass features to the theoretical list of Hp-β glycopeptide profiles (see Materials and Methods for details). For this, we assumed the presence of only complex N-glycans on all four glycosylation sites in Hp-β, as previously reported in detail (37, 48).

Our analysis supported that the majority of Hp proteoforms contain complex N-glycans on all of their four potential N-glycosylation sites with a pronounced level of macro and microheterogeneity (Fig. 4C). By fragmenting the most abundant glycopeptide profiles using top-down electron transfer dissociation (ETD)-MS/MS we observed that branching and fucosylation occur predominantly on sites Asn207/Asn211, while Asn184 and Asn241 primarily harbor complex bi-antennary N-glycans (SI Appendix, Fig. S5). These results are nicely in agreement with reported data obtained by a more detailed bottom-up glycopeptide analyses (35, 36). We also detected Hp-β glycoforms with only three N-glycosylation sites occupied, which were somewhat more abundant in the Hp 2-2 samples, although in all cases they were significantly less abundant (2.15 ± 0.27% of total Hp-β proteoforms for Hp 1-1 and 5.50 ± 0.94% for Hp 2-2) compared to fully occupied forms. Top-down ETD-MS/MS of this partially glycosylated Hp-β revealed that the putative Asn241 glycosylation site does not harbor any glycans. For some of the highly hydrophilic, albeit very low abundant, glycoform masses (Fig. 4C, labeled as unk), we were not able to match their determinate by us glycosylation compositions (e.g., H26HN15F1) to any of the N-glycan combinations reported for Hp; therefore, we chose to exclude them from further analysis.

Overall, we observed that the Hp1-β contains more branched complex N-glycans with a substantially higher level of fucosylation compared to the Hpb2-β chain (Fig. 4D). These observed apparent differences between the two glycoform masses allowed us to further investigate the glycosylation patterns as a function of the Hp oligomeric state, which is the primary distinctive feature between Hp 1-1 and Hp 2-2. For this, we performed HILIC-LC-MS analysis of several of the above-mentioned Hp 2-2 SEC fractions (Fig. 3B), which correspond to different Hp oligomers. As branching and fucosylation appeared to be different between Hp 1-1 and Hp 2-2, we specifically focused on these two features in the glycosylation patterns of the distinct Hp 2-2 oligomers. Interestingly, the data revealed that with the decreasing size of the Hp oligomer, both branching and fucosylation were increasing (Fig. 4E). The same trend was observed for oligomers of Hp 2-1 (SI Appendix, Fig. S6D). These trends of decreasing complexity in glycosylation with increasing oligomeric state correlate with the mass photometry results for Hb-bound and -unbound fractions of Hp 2-2 and Hp 2-1, wherein the binding affinity of Hp to Hb is decreasing with the increasing size of the Hp complex. Recently, fucosylation and branching of N-glycans were shown to enhance the binding affinity of Hp 1-1 to Hb (48). Here, we hypothesize that glycosylation not only mediates Hb binding within the single oligomeric state of Hp 1-1 but, concurrently, plays an essential role in fine-tuning Hb binding in all of the co-occurring distinct oligomeric states of Hp 2-2 and Hp 2-1.

In addition to the glycosylation patterns of Hp-β being dependent on the oligomeric state, we discovered a trend in the processing of Hp-α, which also correlates with Hb binding. Hp-α...
is formed when the proform of Hp is cleaved after Arg102 or Arg161, depending on the genotype, in the ER before entering the Golgi (11). Following this cleavage, a newly formed C-terminal Arg on the Hp-α-chain is thought to be removed by an unknown carboxypeptidase while in circulation (27) (Fig. 1). Our data revealed that for serum Hp this clipping reaction is not complete, as evidenced by detecting in the LC-MS data two Hp-α-proteoforms with reverse-phase LC-MS. The nonresolved glycoforms of Hp-α in Hp 1-1 and Hp 2-2 based on the three technical replicates. Error bars represent SEM. The color scheme is the same as in C. (E) Levels of fucosylation (filled bar) and biantennary glycans (empty bar), as observed in Hp 2-2 oligomers. Illustratively, a schematic representation of a biantennary glycan attached to a higher Hp oligomer and a branched and fucosylated glycan on a smaller oligomer of Hp 2-2 is depicted above. (F) Abundance of the noncleaved Hp-αR form in distinct Hp 2-2 oligomers. (H) Abundance levels of noncleaved Hp-αR and Hp-α2R in Hb-bound (Hp+) and Hb-unbound (Hp−) fractions following the above mentioned Hb-binding assays of Hp 1-1 and Hp 2-2 (see main text) reveal that the processing is crucial for tight Hb binding. (I) Overview of the primary glycan compositions for glycoforms of Hp-β depicted by the integer and lowercase Roman letters in C and D. Number of fucoses detected in this study is indicated underneath the glycan structures.
cleared from circulation through high-affinity binding to the macrophage scavenger receptor CD163 (7). However, in the case of severe and acute conditions such as sepsis, thrombosis, malaria, or sickle cell anemia, the heme-group released from free Hb can trigger vascular and organ pathologies that may lead to severe complications (66). Due to its detoxifying qualities, Hp is often considered as the major therapeutic candidate for critically ill patients with excessive intravascular hemolysis (30, 67). The primary bottleneck for expanding the therapeutic use of Hp is in its sheer molecular complexity, mainly originating from the distinctive conformational landscape observed for the different Hp genotypes. Multiple studies have linked the Hp genotype as a risk factor for vascular complications of diabetes (68, 69), which can be partly explained by the differential antioxidant capacity observed for the different Hp genotypes (44). Hp antioxidant function has been found to correlate with the size of Hp oligomers and their ability to neutralize the oxidative effects of Hb. However, these functional assays largely ignore factors that drive differences in Hp–Hb binding at the more-detailed molecular level. For all of these reasons, a detailed characterization of Hp structure is critical for the future application of Hp as a potential biomarker and as a therapeutic agent.

For a long time it was a great challenge to determine a crystal structure of an Hp–Hb complex and define the structural basis for Hp-mediated recognition of Hb. Eventually, a high-resolution structural model of porcine haptoglobin provided a first necessary explanation for the very tight binding between Hp and Hb (21), wherein primarily the Hp serine protease domains form extensive interactions with both the α- and β-chains of Hb. In this work, we investigated the implications of the human genetic polymorphism on the molecular diversity of Hp, which affects not only Hp oligomerization but also Hp glycosylation and Hp-α proteolytic processing. Initially, mass photometry measurements of Hp from different genotypes before and after fractionation using an Hb-affinity agarose column demonstrated that higher–molecular-mass Hp oligomers bind Hb weaker than lower–molecular-mass oligomers. To put these data into context, we characterized the proteoforms of Hp oligomers from the three major Hp genotypes, 1-1, 2-1, and 2-2 by using an integrative mass spectrometry approach combining native MS and intact mass denaturing HILIC-LC-MS. By further investigating Hp proteoforms between and within genotypes, we observed a clear correlation between changes in glycosylation and the size of Hp oligomer. Notably, the level of fucosylation and glycan branching is decreasing with the increasing size of the Hp oligomer in both Hp 2-1 and Hp 2-2. Considering that higher Hp oligomers are weaker binders of Hb, it is tempting to conclude that both extended fucosylation and branching enhance the binding of Hp to Hb, which however, would partly contradict previous data from Wu et al. (48), where Hp 1-1 with a higher branching showed lower affinity to Hb. However, the two observations are rather complementary since in the study of Wu et al. the effect of glycosylation on Hp–Hb binding was described only for the Hp 1-1 genotype. We extend this observation by exploring global glycosylation differences among the three most common Hp genotypes and reveal a relation between the glycosylation pattern and the quaternary structure of Hp. The direct effect of these glycans on the Hp–Hb interaction is difficult to assess; nonetheless, based on the structural model, all of the glycosylation sites are proximal to the Hp–Hb interaction interface (Fig. 5 A and B), which strongly suggests their involvement.

In addition to our observation of distinctive glycosylation patterns between different Hp oligomers, we detected that proteolytic processing of the Hp–α-chain is also dependent on the oligomeric state of Hp. Prohaptoglobin is cleaved after the Arg446 located in the same sequence motif PVQR (70). The newly created C-terminal Arg is directly involved in the interaction observed in the C1r enzyme–product complex (71). While the functionality of C1r highlights the great importance of the C-terminal Arg following autoactivation, the function of the C-terminal Arg in the Hp–Hb complex is so far unknown. Interestingly, this Arg was reported to be partially removed in plasma by a hitherto unknown carboxypeptidase (27). Our data support this finding as we detected variants with and without Arg at the C terminus of the Hp–α-chain (Fig. 4F). Remarkably, we observed that the levels of the form still possessing the C-terminal Arg are not equally distributed among the Hp oligomers but show a continuous trend, similar to the glycosylation of Hp-β. Higher Hp oligomers, which have weaker binding to Hb, exhibit relatively higher levels of the Hp-αR isofrom compared to lower Hp oligomers. We corroborate that the presence of Arg102/161 correlates with the binding affinity of Hp to Hb by detecting depleted levels of this isofrom in the fraction of Hp oligomers that were enriched by Hb-affinity agarose column. Unfortunately, the available structural models of Hp–Hb complexes do not cover the C-terminal region of the Hp–α-chain; therefore, we can only speculate about the potential role of this Arg processing. Notably, by modeling the complete Hp-αR isofrom and placing it within the available Hp–Hb structure, we found that the C-terminal region of Hp-α is flexible and can exist in close proximity to Hp–Hb interaction interface. This indicates that the C-terminal Arg may electrostatically influence Hb binding due to its positive charge (Fig. 5C).

While we clearly show that the oligomeric state of Hp, its glycosylation status, and proteolytic processing all correlate with the strength of Hp–Hb binding, the exact contribution of each of
achieved using isocratic flow within 60 min and the flow rate was set to
0.22-
μL/min. The column compartment was cooled to 17 °C while the
other bays were chilled to 4 °C to minimize sample degradation. The mobile
phase consisted of 150 mM AMAC in water, which was filtered using
Millipore) before use. Typically, 200 μg in the case of reverse phase, LC-MS runtime was set to 12 min with
glycoproteoforms. Next 2 to 5 μL of Hp multimers from Hp 2-2 were purified by SEC. Hp 2-1
were processed in DiscoverMP software. Masses of Hp oligomers were esti-
ated using multimeric analysis, which is described below.
Preparation of Hp and Hp-Hb Samples for Mass Photometry Measurements. Hp
and Hb stock solutions were prepared in 150 mM ammonium acetate solution
(pH 7.6) at a concentration of 1 mg/mL and 2 mg/mL, respectively. Hp and Hb
were mixed and incubated at room temperature for 30 min with a two times
two days, then analyzed by bottom-up proteomics approach, basically as previously de-
scribed (72). See the details in SI Appendix, Supplementary Methods.

Blue Native Gel of Hp Samples from Different Genotypes. A system for native
gel electrophoresis NativePAGE Novex Bis-Tris was obtained from Thermo
Fisher Scientific. Aliquots of 5 μg of Hp protein samples (Hp1-1, Hp 1-2, Hp
mixed type) and their variants incubated with two times molar excess of
Hp (μl) unit were loaded on the top of a precast poly
acrylamide minidiscinuous gel (4–16%), 10-well, 1 mm. The whole
procedure was performed according to the vendor’s instructions.

SEC Separation of Hp Oligomers. An Agilent 1290 Infinity HPLC system (Agilent
Technologies) consisting of a vacuum degasser, binary pump, refrigerated
autosampler with a 100-μL injector loop, thermostated two-column compo-
partment, auto collection fraction module, and multidetection wavelength,
was used in this study. The dual-column set-up, comprising a tandem Yarra
4000-Yarra 3000 (SEC-4000, 300 × 7.8 mm i.d., 3 μm, 500 Å; SEC-3000, 250 ×
7.8 mm i.d., 3 μm, 290 Å) two-stage set-up. Both columns were obtained
from Phenomenex. The column compartment was cooled to 17 °C while the
other bays were chilled to 4 °C to minimize sample degradation. The mobile
phase buffer consisted of 150 mM AMAC in water, which was filtered using
a 0.22-μm disposable membrane cartridge (Millipore) before use. Typically,
200 μg in the case of commercially obtained Hp 1-1 and Hp 2-2 or 100 μL of
Hp (step 2-1) (~7 mg of total protein) were injected per run. Elution was
achieved using isotropic flow within 60 min and the flow rate was set to
350 μL/min. The gradient was created as follows: (step 1; equilibration) 0 to
15562

these factors is challenging to determine. Based on the current
knowledge about Hp biosynthesis, oligomerization occurs in the
ER and, subsequently, the N-glycans are sequentially processed in the
Golgi (24, 26). The various structural conformations of Hp
must define an action space for glycans processing enzymes in the
Golgi; for example, less branched (more compact) glycans are
placed on higher Hp oligomers, which may endure more steric
hindrance in the space between these proteins. At the same time, our data indicate that the higher-order Hp structure
some minor adjustments, which will be described. The mobile
phase consisted of Buffer A (100 mM AMAC in water) and Buffer B (2.5 M AMAC in water), which was filtered using a 0.22-
μm disposable membrane cartridge (Millipore) before use. Injections were
2,500 μL of collected SEC fraction containing specific Hp oligomer per run.
Elution was achieved using a multistep gradient, consisting of six transitions
with increasing proportions of Buffer B: (step 1; equilibration) 0% B, 0 to
6 min; (step 2; salt gradient) 0 to 20% B, 6 to 11 min; (step 3; salt gradient) 20
to 36% B, 11 to 24 min; (step 4; high salt rinse) 36 to 100% B, 24 to 28 min;
(step 5; high salt wash) 100% B, 28 to 32 min; (step 6; restoration) 100 to 0% B.
The flow rate was set to 800 μL/min.

Hp-Affinity Purification for Hp. For Hp-affinity purification for Hp, 100 μg of
Hp in 200 μL of PBS was added and immobilized to NHS-activated agarose
resin (Pierce NHS-activated agarose spin columns, Thermo Scientific) follow-
ing the vendor’s instructions. Next, 200 μL of settled Hb-agarose gel was
incubated with 200 μg of either Hp 1-1, Hp 2-2, or Hp M at a final volume of
400 μL for 2 h with end-over-end mixing at room temperature. The mixture of Hp and Hb-agarose slurry was washed with 2 mL PBS. The flow-through
and washes were pooled as Hp-unbound Hp (Hp− fraction). The Hp bound to
Hb (Hp+ fraction) was eluted from Hb-agarose gel with 2 mL elution
buffer (Pierce IgG Elution Buffer, Thermo Scientific). The Hp# and Hp+ Hp
fractions were concentrated and buffered exchanged into 150 mM ammonium
acetate through several dilution and concentration cycles using ultrafiltration
spin columns with 10-kDa cutoff (Vivaspin 500 μL; Sartorius Stedim
Biotech).

Preparation of Hp and Hp-Hb Samples for Mass Photometry Measurements. Hp
and Hb stock solutions were prepared in 150 mM ammonium acetate solution
(pH 7.6) at a concentration of 1 mg/mL and 2 mg/mL, respectively. Hp and Hb
were mixed and incubated at room temperature for 30 min with a two times
molar excess of Hp (μl) unit compared to Hp (μl) unit.

Mass Photometry. Mass photometry data were collected on a Refeyn One™
instrument. The instrument was calibrated with a native marker protein
standard mixture (NativeMark Unstained Protein Standard, Thermo
Scientific), which contains proteins in the range from 20 to 1,200 kDa. The fol-
lowing masses were used to generate a standard calibration curve: 66, 146,
480, and 1,048 kDa. Borosilicate coverslips were extensively cleaned with
Milli-Q water and isopropanol prior to the measurements. Typically, 10 μL of
Hp was applied to 10 μL buffer on a coverslip resulting in a final concen-
tration 2 to 5 nM. Mass profiles of following samples were acquired: Hp 1-1,
Hp 2-2, Hp mixed type, Hp (1, 1)-Hb, Hp (2, 2)-Hb, Hp(M)-Hb, Hp (1, 1) Hp+
fraction, Hp (1, 1) Hp− fraction, Hp (2, 2) Hp+ fraction, Hp (2, 2) Hp− fraction,
Hp(M) fraction, Hp(M)− fraction. Mass profiles were acquired using
Acquire™ software for 60 to 100 s with a frame rate of 100 Hz. From 1,000 to
4,000 particle landing events were detected per movie. We used for
threshold 1 and threshold 2 parameters 1.50 and 0.25, respectively. All data
were processed in Discover™ software. Masses of Hp oligomers were esti-
rated by fitting a Gaussian distribution into mass histograms and taking the
value at the mode of the distribution. Probability density functions were
extracted and overlaid in R to generate Fig. 2 B–H.

Native MS Analysis Using a QE-UHMR Mass Spectrometer. Samples were in-
troduced into a modified Q Exactive Orbitrap instrument with Ultra High
Mass Range detection capability (QE-UHMR; Thermo Fisher Scientific) via
gold-coated borosilicate capillaries prepared in-house (74). The following MS
parameters were used. Capillary voltage: 1,100 to 1,300 V in positive ion
mode; trap gas: N2 at 280 mTorr and peak

Dual-Column IEX Separation of Hp 2-1 SEC Fractions. Collected SEC fractions of
Hp 2-1 purified from serum of one individual were further cleaned up from
interfering serum proteins. The same chromatographic system was used as in
the case of SEC with some minor adjustments, which will be described. The mobile
phase consisted of Buffer A (100 mM AMAC in water) and Buffer B (2.5 M AMAC in water), which was filtered using a 0.22-
μm disposable membrane cartridge (Millipore) before use. Injections were
2,500 μL of collected SEC fraction containing specific Hp oligomer per run.
Elution was achieved using a multistep gradient, consisting of six transitions
with increasing proportions of Buffer B: (step 1; equilibration) 0% B, 0 to

15562

www.pnas.org/cgi/doi/10.1073/pnas.2002483117 Tamara et al.
by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.

Identification of Hp Glycopeoforms and Their Assemblies. Raw native spectra were deconvoluted with UniDec in order to obtain zero-charge mass distributions (75). Raw intact mass LC-MS data were deconvoluted using a sliding window deconvolution and ReSpect algorithm (Protein Deconvolu-
tion 4.0, Thermo Fisher Scientific). Average masses of common monosac-
charides were used for the PTM assignments, including hexose (Hex; 162.14 Da), N-acetylhexosamine (HexNAc; 203.20 Da), and deoxyhexose (Fuc; 146.14 Da). The theoretical average masses of the Hp amino acid chains were cal-
determined with native MS and denatured and reduced Hp glycoproteo-
forms by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.

Identification of Hp Glycopeoforms and Their Assemblies. Raw native spectra were deconvoluted with UniDec in order to obtain zero-charge mass distributions (75). Raw intact mass LC-MS data were deconvoluted using a sliding window deconvolution and ReSpect algorithm (Protein Deconvolu-
tion 4.0, Thermo Fisher Scientific). Average masses of common monosac-
charides were used for the PTM assignments, including hexose (Hex; 162.14 Da), N-acetylhexosamine (HexNAc; 203.20 Da), and deoxyhexose (Fuc; 146.14 Da). The theoretical average masses of the Hp amino acid chains were cal-
determined with native MS and denatured and reduced Hp glycopeo-
forms by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.

Identification of Hp Glycopeoforms and Their Assemblies. Raw native spectra were deconvoluted with UniDec in order to obtain zero-charge mass distributions (75). Raw intact mass LC-MS data were deconvoluted using a sliding window deconvolution and ReSpect algorithm (Protein Deconvolu-
tion 4.0, Thermo Fisher Scientific). Average masses of common monosac-
charides were used for the PTM assignments, including hexose (Hex; 162.14 Da), N-acetylhexosamine (HexNAc; 203.20 Da), and deoxyhexose (Fuc; 146.14 Da). The theoretical average masses of the Hp amino acid chains were cal-
determined with native MS and denatured and reduced Hp glycopeo-
forms by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.

Identification of Hp Glycopeoforms and Their Assemblies. Raw native spectra were deconvoluted with UniDec in order to obtain zero-charge mass distributions (75). Raw intact mass LC-MS data were deconvoluted using a sliding window deconvolution and ReSpect algorithm (Protein Deconvolu-
tion 4.0, Thermo Fisher Scientific). Average masses of common monosac-
charides were used for the PTM assignments, including hexose (Hex; 162.14 Da), N-acetylhexosamine (HexNAc; 203.20 Da), and deoxyhexose (Fuc; 146.14 Da). The theoretical average masses of the Hp amino acid chains were cal-
determined with native MS and denatured and reduced Hp glycopeo-
forms by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.

Identification of Hp Glycopeoforms and Their Assemblies. Raw native spectra were deconvoluted with UniDec in order to obtain zero-charge mass distributions (75). Raw intact mass LC-MS data were deconvoluted using a sliding window deconvolution and ReSpect algorithm (Protein Deconvolu-
tion 4.0, Thermo Fisher Scientific). Average masses of common monosac-
charides were used for the PTM assignments, including hexose (Hex; 162.14 Da), N-acetylhexosamine (HexNAc; 203.20 Da), and deoxyhexose (Fuc; 146.14 Da). The theoretical average masses of the Hp amino acid chains were cal-
determined with native MS and denatured and reduced Hp glycopeo-
forms by mobile phases A (water/0.1% trifluoroacetic acid) and B (ACN/0.1% tri-
fluoroacetic acid) was used in HILIC for ion-pairing of amines of Gp proteins to reduce the unspcific binding of Gp-β gly-
coproteoforms. All intact mass LC-MS experiments were performed on a
Thermo Fisher Scientific Orbitrap Fusion Lumos Tribrid mass spectrometer.
LC-MS data were collected with an instrument set to the Intact Protein Mode
and low-pressure setting. The Orbitrap resolution parameter was set to 7,500 (at 200 m/z)
corresponding to a 16-ms transient signal. Full MS scans were acquired for the range of 900 to 3,000 m/z with the automatic
gain control target set to 3e6. The maximum injection time was defined at
50 ms with 5 scans recorded. Source-induced desolvation (SID) voltage was set to 15 V.
37. P. Pompach et al., Protein and site specificity of fucosylation in liver-secreted glyco-
38. S. Zhang, S. Shang, W. Li, X. Qin, Y. Liu, Insights on N-glycosylation of human hap-
40. L. Klaric et al., Glycosylation of immunoglobulin G is regulated by a large network of
41. T.-M. Cheng et al., Immunochemical property of human haptoglobin phenotypes:
electrophoresis gels shows the variation pattern of the human serum fetuin/
43. J. Javid, The effect of haptoglobin polymer size on hemoglobin binding capacity. Vox
44. M. Melamed-Frank et al., Structure-function analysis of the antioxidant properties of
45. H. Hamaguchi, Purification and some properties of the three common genetic types of
46. M. J. Nielsen et al., Haptoglobin-related protein is a high-affinity hemoglobin-binding
47. M. S. Spagnuolo, L. Cigliano, B. Maresca, C. R. Pugliese, P. Abrescia, Identification of
plasma haptoglobin forms which loosely bind hemoglobin. Biol. Chem. 392, 371–376
(2011).
48. D. Wu, W. B. Struve, D. J. Harvey, M. A. J. Ferguson, C. V. Robinson, N-glycan mi-
49. D. Wu, J. Li, W. B. Struve, C. V. Robinson, Probing N-glycoprotein microheterogeneity
by lectin affinity purification-mass spectrometry analysis. Chem. Sci. 10, 5146–5155
(2019).
50. G. Young et al., Quantitative mass imaging of single biological macromolecules.
51. S. Tamara, M. Hoek, R. A. Scheltema, A. C. Leney, A. J. R. Heck, A colorful pallet of
52. T. Okazaki, T. Nagai, Difference in hemoglobin-binding ability of polymers among
53. R. A. Smith, N. L. Keller, Consortium for Top Down Proteomics, Proteoform: A
54. T. Cavall, W. Tian, Z. Yang, H. Claes, A. J. R. Heck, Direct quality control of glyco-
55. T. K. Tobi, L. Fornelli, N. L. Kelleher, Progress in top-down proteomics and the analysis of
57. D. Wu, J. Zhu, A. J. R. Heck, Comprehensive proteoform characterization of plasma
component complex Cββu by hybrid mass spectrometry approaches. J. Am. Soc.
58. B. Buszewski, S. Noga, Hydrophilic interaction liquid chromatography (HILIC)—A
59. M. Polonovski, Existence dans le plasma sanguin d’une substance activant l’action
60. D. J. Schauer, P. W. Buehler, A. I. Alyash, J. D. Biecher, G. M. Vercellotti, Hemolysis and
free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel
disease models leading the way to targeted therapies. Cold Spring Harb. Perspect.
62. A. Y. Levy et al., Haptoglobin phenotype and vascular complications in patients with
63. A. Roguin et al., Haptoglobin phenotype as a predictor of restenosis after percuta-
64. M. Budayova-Spano et al., Monomorphic structures of the zymogen and active catalytic
domain of complement protease C1r: Further insights into the C1 activation mecha-
65. J. Kardos et al., Revisiting the mechanism of the autoactivation of the comple-
ment protease C1r in the C1 complex: Structure of the active catalytic region of
66. M. van de Waterbeemd et al., Dissecting ribosomal particles throughout the king-
9, 2493 (2018).
67. P. C. Havugimana, P. Wong, A. Emili, Improved proteomic discovery by sample pre-
fractionation using dual-column ion-exchange high performance liquid chromatog-
68. M. van de Waterbeemd et al., High-fidelity mass analysis unveils heterogeneity in
69. M. T. Marty et al., Bayesian deconvolution of mass and ion mobility spectra: From
71. R Core Team, R: A Language and Environment for Statistical Computing, (R Foun-