BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjpaedsopen.bmj.com).

If you have any questions on BMJ Paediatrics Open’s open peer review process please email info.bmjpo@bmj.com
Caring for the Future: Global Characteristics of the Blast Injured Child

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Paediatrics Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjpo-2019-000452</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>15-Feb-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Milwood Hargrave, John; Bioengineering Bull, Anthony; Dept of Bioengineering Pearce, Phillip; Dept of Bioengineering Mayhew, Emily; Imperial College London, Bioengineering Taylor, Sebastian; Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paediatric Practice, Paediatric Surgery, Accident & Emergency, General Paediatrics</td>
</tr>
</tbody>
</table>
Title:

Caring for the Future: Global Characteristics of the Blast Injured Child

Corresponding author:

Emily Mayhew
Dept. of Bioengineering, Imperial College London
Queensgate
London SW7 2AZ
Tel: 074949 63074
Email: e.mayhew@imperial.ac.uk

Authors:

John F.S. Millwood Hargrave,
South Thames Foundation School
Royal Army Medical Corps
208 Field Hospital, London, UK

A. Phillip Pearce,
Centre for Blast Injury Studies
Imperial College London

Emily R. Mayhew,
Dept of Bioengineering
Imperial College London

Anthony M.J. Bull,
Dept of Bioengineering
Imperial College London

Sebastian Taylor
Royal College of Paediatrics and Child Health
London
Keywords: Paediatric, blast, trauma, conflict, outcomes

Wordcount: 5,000.
Key questions

What is already known about this topic?

- Approximately one in six children live in conflict zones, where exposure to blast injuries is not uncommon.
- Blast injuries have the potential to inflict significant mortality and morbidity upon the global paediatric population living in conflict zones.
- Describing the characteristics of injuries sustained by the paediatric population is essential in advancing local and global health policies.
- Despite this, common themes related to paediatric injury following to blasts are poorly described.

What are the new findings?

- The demographics, mortality and injuries that are specific characteristics of blast injuries upon the paediatric population are described.
- Children are uniquely vulnerable to different injury patterns following blast injuries compared to adults.
- Treatment service requirement for the paediatric population is significant and disproportionate compared to cohort size, and provisions for increased operative and bed requirement is essential.

Recommendations for policy

- These results highlight and quantify the scope of the paediatric injury burden posed by blasts.
- These results highlight priorities in caring for the paediatric population, and where future service provision can be optimised.
Abstract

Background and significance. Blast injuries arising from high explosive weaponry is common in conflict areas. While blast injury characteristics are well recognised in the adults, there is a lack of consensus as to whether these characteristics translate to the paediatric population. Understanding blast injury patterns in this cohort is essential for providing appropriate provision of services and care for this vulnerable cohort.

Methods. In this mixed-method review, original papers were screened for data pertaining to paediatric injuries following blasts. Information on demographics, morbidity and mortality and service requirements were evaluated.

Results. Children affected by blast injuries are predominantly male and their injuries arise from explosive remnants of war, particularly unexploded ordnance. Blasts show increased morbidity and mortality in younger children, while older children have injury patterns similar to adults. Head and burn injuries represent a significant cause of mortality in young children, while lower limb morbidity is reduced compared to adults. Children have a disproportionate requirement for both operative and non-operative service resources, and provisions for this burden are essential.

Conclusions. Certain characteristics of paediatric injuries arising from blasts are distinct from that of the adult cohort, while the intensive demands on services highlights the importance of understanding the diverse injury patterns in order to optimise future service provisions in caring for this vulnerable cohort.
1. Introduction

Approximately one in six children live in conflict zones, with the main global burden borne by citizens of low and middle income countries (LMICs)(1). Children enmeshed in conflict and post-conflict zones are frequently exposed to high-order explosives (HE), either through explosive remnants of war (ERW) such as landmines and unexploded ordinance (UXOs), military ordnance such as shelling and aerial bombardments or acts perpetrated by non-state actors such as improvised explosive devices (IEDs) and suicide bombing(2). HE can inflict unique and unusual injuries upon the child through the blast over-pressure wave (primary blast injury), energisation of materials causing fragmentation (secondary blast injury), bodily displacement or crush injuries (tertiary blast injuries) and through burns, inhalation, toxic or psychological trauma (quaternary blast injuries)(3).

Article 3.3 of the UN Convention on the Rights of the Child (UNCRC) states that medical care of the child be delivered and supervised by providers competent in that field(4). However, paediatric care in conflict zones is often delivered by personnel for whom experience of dealing with paediatric blast injuries is unusual(5). Primary studies increasingly recognise the complex patterns of injury sustained in the adult population following blast exposure(3), however there is a lack of consensus as to whether applying lessons learnt from the adult population translates appropriately into paediatric cohorts(6). Bree et al(7) argue that principles for life-saving interventions, such as prioritising catastrophic haemorrhage, airway, breathing and circulation are just as applicable in children as adults. Conversely Fendya et al(8) contend that directly applying adult trauma principles to the paediatric population neglects the social, anatomical, physiological and psychological differences between adults and children, affecting the validity of these inferences.

While primary studies have described injuries sustained by the blast injured child, no study has attempted to synthesise the data to identify recurrent characterises in this vulnerable cohort. Understanding the characteristics of such injuries to the paediatric population will advance efforts to prevent, mitigate, and treat these injuries in domestic and deployed health systems(3). The aim of this review is to provide an overview of injury patterns and challenges in caring for the blast-injured child, in order to define future research needs for protection, mitigation, immediate medical treatment, and rehabilitation.

2. Methods

In this mixed-methods review, original peer-reviewed quantitative, qualitative and mixed-method observational studies, in addition to grey literature, were screened for data on
explosive injuries in paediatric cohorts. By utilising all study designs, greater capture of relevant literature was achieved, although this meant the data was unsuitable for a formal systematic review. PubMed and Scopus (including Embase) were searched. Search terms including “Paediatric” OR “Pediatric” OR “Child*” OR “Children” AND “Blast” OR “Explosi*” OR “Explosion” were used to capture potential studies. Articles had to be written in English and published before December 16, 2018. Studies involving adult as well as children were included, in addition to articles where the mechanism of injury was mixed. This decision was taken in order to accurately reflect the settings the studies represent, where victims in conflict zones are heterogenous and subject to a variety of combat related mechanisms. Studies were omitted if they did not specify explosive mechanisms or include children.

Children are defined as all humans under the age of eighteen years (as specified by the United Nations Convention on the Rights of the Child)(4). The heterogeneity and arbitrary nature of what defines a child is acknowledged, and studies often utilise individual definitions. Within this review ages are defined thus: <1 year are infants, 1-8 are young children; 9-13 are older children and 14-18 are adolescents.
3. Results

47,580 eligible studies were found following academic database searches, of which 4,433 were removed as duplicates, leaving 43,147 of papers for title assessment. 906 (2.1%) of these papers had their abstracts assessed, of which 242 (0.6%) studies were included for full text review. Data were extracted from 74 (0.2%) studies for use within this review (Table 1).

Table 1. The 74 studies included within the review

<table>
<thead>
<tr>
<th>Monitor Location</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect Investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aharonson-Daniel et al (2003) (9)</td>
<td>1994-1995</td>
<td>Afghanistan</td>
<td>2100</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. National Trauma Registry</td>
<td>Socio-economic community surveillance</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Military/Civilian</th>
<th>Paediatric Percentage</th>
<th>Injuries and Mortality Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (23%); Other/Unknown (4%); Non-Combat (57%)</td>
</tr>
<tr>
<td>2013-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>82%</td>
<td>IEDs/Shelling (77%); Other/Unknown (16%)</td>
</tr>
<tr>
<td>2006-2011</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>100%</td>
<td>UXO (100%)</td>
</tr>
<tr>
<td>2006-2013</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>72%</td>
<td>UXO (100%)</td>
</tr>
<tr>
<td>2005-2006</td>
<td>Iraq</td>
<td>Civilian</td>
<td>80%</td>
<td>IEDs (82%); Other/Unknown (18%)</td>
</tr>
<tr>
<td>2013</td>
<td>USA</td>
<td>Civilian</td>
<td>10%</td>
<td>IEDs (100%)</td>
</tr>
<tr>
<td>2011-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>100%</td>
<td>IEDs/Shelling (79%); Other/Unknown (21%)</td>
</tr>
<tr>
<td>2011-2016</td>
<td>Syria</td>
<td>Civilian</td>
<td>100%</td>
<td>IEDs/Shelling (79%); Other/Unknown (21%)</td>
</tr>
<tr>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (79%); Other/Unknown (21%)</td>
</tr>
<tr>
<td>1991-1995</td>
<td>Eritrea</td>
<td>Military</td>
<td>100%</td>
<td>Landmines (100%)</td>
</tr>
<tr>
<td>2008</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (87%); Other/Unknown (6%)</td>
</tr>
<tr>
<td>1988-2013</td>
<td>Iran</td>
<td>Military</td>
<td>100%</td>
<td>Landmines (100%)</td>
</tr>
<tr>
<td>2003-2014</td>
<td>Iraq</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (59%); Other/Unknown (41%)</td>
</tr>
<tr>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (63%); Other/Unknown (37%)</td>
</tr>
<tr>
<td>1991-1992</td>
<td>Croatia</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (54%); Other/Unknown (46%)</td>
</tr>
<tr>
<td>2010</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2010-2011</td>
<td>Pakistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>1991-2000</td>
<td>Bosnia and Herzegovina</td>
<td>Military</td>
<td>100%</td>
<td>Landmines (100%)</td>
</tr>
<tr>
<td>2007-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (67%); Other/Unknown (33%)</td>
</tr>
<tr>
<td>2000-2003</td>
<td>Israel</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2003-2004</td>
<td>Israel</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2004</td>
<td>Iraq</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (51%); Other/Unknown (49%)</td>
</tr>
<tr>
<td>2008-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (51%); Other/Unknown (49%)</td>
</tr>
<tr>
<td>2007-2011</td>
<td>Pakistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2014</td>
<td>Iran</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (67%); Other/Unknown (33%)</td>
</tr>
<tr>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (67%); Other/Unknown (33%)</td>
</tr>
<tr>
<td>2001-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (51%); Other/Unknown (49%)</td>
</tr>
<tr>
<td>2008-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (51%); Other/Unknown (49%)</td>
</tr>
<tr>
<td>2010-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (51%); Other/Unknown (49%)</td>
</tr>
<tr>
<td>2006</td>
<td>Israel</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2002-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2015</td>
<td>Iran</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>1996</td>
<td>USA</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
<tr>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Military</td>
<td>100%</td>
<td>IEDs/Shelling (90%); Other/Unknown (10%)</td>
</tr>
</tbody>
</table>
3.1 Demographics

Following the use of explosive weaponry by non-state actors against civilians, the most commonly injured paediatric cohort are males aged 10-18 years old (9,12,80), while children involved in conflict and ERW blast injuries were generally aged between 4-10 years old (37,81). Perpetrators target busy areas such as restaurants and nightclubs which older children and adolescents might frequent (10,12,80), while cultural factors within LMICs in these social areas result in a predominantly male cohort (9,10,25,44,54,56,59,63,69,80). Similar gender finding are observed in children following conflict and ERW related injuries where all studies showed male predominance in victims, with over 70% male in three quarters of the studies (Figure 1).

(Figure 1. Gender differences in in casualties following blast)

ERW contribute considerable morbidity and mortality both during and following conflict. As seen in figure 2, children were more likely to be injured by UXO compared with adults, while landmines affected a predominately adult cohort (11,13,16,18,20,22,23,31,57).

(Figure 2. Percentage of Casualties (injuries and fatalities) by specific modalities)

UXOs have been described as small, colourful and toy-like, promoting child interaction and subsequent injury from handling, resulting in often fatal upper limb, head, neck or chest injury (18,31,41,84,85). Due to the social nature of children, these interactions commonly occur in groups, leading to multiple casualties in 45-63% of events involving children compared to 30-40% in adults (20,57,64).

Occupation and education play a role in ERW injuries. It is common for children in LMICs, particularly males, to assist their family with herding and farming as opposed to attending school. This may affect the likelihood to exposure to ERWs through increased freedom to roam where such devices are present (25,42,64,72). A lack of formal education impacts the
child’s ability to read warning signs; only 6-22% of victims were aware ERWs were present(27,80) and of these, only 0-11% had received ERW risk education(23,25,27,80).

Children are particularly vulnerable to wide-area explosives such as aerial bombardment and shelling, particularly in the primarily urbanised environments of modern conflicts. In the Syrian Civil War, three quarters of wide-area explosives were used in civilian residential areas that children frequent, with these mechanisms responsible for 82% of child deaths(45,46).

The following section reviews what is known of mortality in children before reviewing injury types.

3.2 Mortality

Comparison of paediatric wartime mortality data is difficult as many studies do not differentiate mechanism of injury. Edwards et al(86) study on 4,913 children between 2002-2010 presenting with blast injuries remains the single largest data set. The reported mortality rate of 8% matches well with the mortality rates of 6-9% quoted in paediatric trauma deaths from Iraq and Afghanistan, although these studies displayed all trauma mechanisms as opposed to specifying blast trauma(15,27,30,35,39,62). Between 2006-2013, Thompson et al. (78) noted a mortality rate over double of that quoted by Edwards et al. following paediatric blast injury in Afghanistan (18%). Operational tempo and the increasing use of IEDs have been hypothesized to underlie these discrepancies in mortality(78).

Age related variation in mortality has been described. Matos et al noted mortality was highest at 24% in young children (5-8 year old)(60) while Schauer et al and Spinella et al found greatest mortality in 0-4 years(74,76). Similarly, Borgman et al and Matos et al noted that children <8 years old had increased trauma mortality compared to 8-16 year olds (10-18% vs 4-7%)(28,60), while Spinella et al noted a similar increase in mortality in young children (<6 year old) compared to 6-16 year olds (11% vs 4%)(76). Few studies directly compare adult and paediatric mortality, and comparisons between studies are difficult due to methodological differences. What is common is that mortality in children following combat related trauma is considerably higher than that of paediatric non-combat trauma (2-3%)(87) and adult military combat casualties (1-3%)(88,89).

A wide range of paediatric mortality is reported following mine strikes, ranging from 4-46%(13,18,20–24,31,41,84). Shuker et al(90) suggested that approximately half of paediatric victims die within minutes of mine explosion, likely due to lacerations to the head, major blood vessels or vital organs causing non-survivable injuries, in keeping with adult literature(88,89).
Time critical injuries following blasts may represent particular problems in LMIC’s, where pre-hospital evacuation chains may be protracted. Coupland(91) noted that in 1991, only 14% of paediatric and adult ERW victims were admitted in under six hours, while the majority (58%) were admitted between 6-24 hours and 28% presented after 24 hours. Even in recent conflicts, Bitterman et al(26) found <10% of children presented within 1 hour, with over a third presenting after 6 hours. Protracted evacuation of paediatric victims add to blast mortality, reinforced by studies observing a 85-91% mortality of children either at scene or en-route to health facilities(23,90).

3.3 Injury types and mortality

3.3.1 Vascular damage

Penetrating injuries occur in 38-76% of blast-exposed children (9,10,15,16,27,35,68,80), with incidence greater in older children aged 10-16 compared to 0-10 year olds (65-83% vs 47-63%)(54,60). In keeping with penetrating injury patterns, vascular injury was observed in 3-12% of children following blast trauma (9,16,79,80), considerably higher compared to non-blast conflict trauma where vascular injury occurred in 0.6-1% of paediatric victims(9,10,59,61,79).

Vascular damage and subsequent haemorrhage following explosions have been identified as a significant cause of childhood fatalities, ranging from the primary cause of death in 21-38% during the Syrian Civil War(32,33) to 63% following IED and suicide attacks in Pakistan(63), while mortality rates following penetrating injuries in civilian settings are considerably lower (5%)(79). Extremity trauma was most highly associated with vascular injuries, with the majority of vascular injuries occurring in the lower limb (38-58%) followed by the upper limbs (25-28%)(36,79). This is in keeping with adult data where 54% of injuries were sustained to the extremities(88). Despite its high prevalence, extremity vascular wounds confer reduced risk of death compared to vascular damage within the torso, attributed as the primary cause of death in 71% of paediatric deaths and conferring a four-fold increased risk of death compared to extremity vascular injuries(79).

Data on vascular damage is clear: older children and adolescents sustain similar rates of vascular injury to adults, particularly to the extremities, while mortality following penetrating trauma is primarily the result of injuries to the vasculature within the torso.

3.3.2 Head injury
The prevalence of head injuries following blasts are diverse, ranging from 6-54\% (10,12,15,17,19,26,30,34,35,37,40,51–53,61,79,80), while adult combat data ranges from 16-29\% (88). This variation is due to the heterogenous definitions of head injury described in these studies, with few studies differentiating between superficial scalp wounds, blunt traumatic brain injury (TBI) or penetrating TBI. Where head injuries were documented, TBI was recorded in 21-62\% of paediatric victims, of which 38-39\% were defined as penetrating (42,52,80). Unsurprisingly, papers noted over double the incidence of paediatric penetrating head injury in blast trauma compared to mainly blunt civilian trauma (13\% vs 6\%), while the reverse was true in closed head injuries, with half the incidence of closed head injuries in blast injuries compared to civilian trauma (22\% vs 44\%) (9).

Cerebral haemorrhage and direct cranial damage following blast have been attributed as a leading cause of death in children, responsible for 46-71\% of fatalities (36–38,43,101). Creamer (38) noted penetrating wounds to the head accounted for 44\% of child deaths in the emergency department while open skull fractures with cerebral evisceration was documented in 88\% of paediatric fatalities following the 1995 Oklahoma City bombings (102). While penetrating head injuries undoubtedly carry high mortality, Woods (83) noted that 8 children survived to hospital discharge despite penetrating head injuries deemed initially unsurvivable, suggesting such are not unequivocally fatal.

Er et al (40) noted that children were more likely to be injured in the head compared to adults (54\% vs 40\%) following aerial and shelling during the Syrian Civil War, while young children aged between 0-4 year old were more likely to undergo neurosurgical procedures compared to other ages (39,58), 48\% of which were craniectomies or craniotomies for penetrating brain injury, mainly secondary to IED blasts (58). Suggested reasons for this increase may relate to anatomical predispositions, particularly in infants, such as large head to body ratios in addition to reduced skull rigidity (54) as well as the relatively shorter distance from the head to ground-based ERW and IEDs compared to adults (18,37,54,85,90).

There is a clear lack of studies investigating long term outcomes following blast-associated head injuries. While significant cognitive, intellectual and functional sequelae arising from non-blast TBI (nTBI) have been described, controversy exists as to whether nTBI is analogous to blast-induced TBI (92), and the paucity of paediatric data means this comparison is even more problematic.

A unifying message is that head injuries are associated with high morbidity and mortality in paediatric blast trauma, while the long term consequences remain largely unknown. Head injuries are commonly penetrating compared to civilian practice, and increased operative
demand in infants and toddlers for neurosurgical procedures may stretch medical service expertise.

3.3.3 Facial and ocular injuries

Blasts result in injury to the face in between 27-48% of paediatric victims, compared to 12% resulting from GSW(12,37,53) and 10% in adults(88). Relative to other blast related injuries, facial injuries in isolation are associated with reduced mortality(37). However, Gataa (43) noted that of the patients presenting with facial injuries, 29% had concomitant eye injury, 22% had TBI, while life-threatening facial bleeding occurred in 10% of patients. In addition to physical sequelae, facial injuries are associated with functional and psychological disorders stemming from stigmatisation of disfiguring injuries with implications for future social, economic and marital prospects(43).

Despite only comprising of 0.3% of the anterior body surface, the eye is sensitive to blast injury, with ocular injuries in 4-28% of children following trauma related to combat or ERW (15,17,19,26,34,35,42,61,64). In keeping with patterns of facial injury, an increased prevalence of eye injury is associated with blast injuries compared to GSW (13% vs 3%)(12). Landmines are often associated with multiple foreign bodies on the conjunctiva, cornea and sclera, in addition to sight-threatening injuries such as enucleation or eye globe perforation(31). Monocular enucleation was observed in 4%, while bilateral enucleation, and hence blindness, was more common (14%)(31,64). When compared to adult victims of landmines and cluster bombs, children have more eye injuries (14% vs 8%)(57) as well as twice the prevalence of eye globe perforation (28% vs 14%)(40) and complete loss of vision (21 vs 10%)(18). Without adequate support, both monocular and bilateral vision loss may translate to developmental and educational deficiencies in the growing child.

Facial and eye injuries are frequent following exposure to blasts, and should raise suspicion of intracranial injury. Important are the social and education implications of these disfiguring injuries in the growing child.

3.3.4 Torso Injuries

Following blast injury, trauma to the torso is common, varying from 12-46% between studies (12,15,17,19,26,30,31,35–37,40,51–53,63,79) and peaking in 5-10 year olds(54,80). Er et al.’s (40) study on civilian paediatric injuries during the Syrian Civil War noted that the abdomen was less commonly injured compared to adults (12 vs 20%), while chest injury with accompanying lung contusion was present in 51% of children with torso injuries, compared to
35% in adults. Both chest and abdominal injuries from blast are typically classed as ‘severe’(37). Abdominal injuries accounted for 18-19% of injury specific deaths following blast in the paediatric population, while chest injuries have been attributed to 8% of deaths in the ED(35). Explanations for this susceptibility to severe and life threatening torso injuries include a lack of body armour compared to adult combat victims and the observation that children have flexible rib cages allowing greater damage to underlying structures without rib fracture, contributing to the increase in lung contusion observed(79).

When organ specific injuries were examined, blast was most likely to cause open penetrating wounds of the bowel and intra-abdominal organs, affecting the small intestine in over a third (34%) and the liver, spleen or pancreas in 36%(14,35,67). Where internal organ damage was sustained, injury specific mortality almost doubled from 15 to 29%(32). These injuries were frequently contaminated due to bowel rupture, requiring multiple procedures and a high rate of antibiotic usage(77). The thinner abdominal walls, reduced intraabdominal fat and larger solid organs relative to the body cavity increases likelihood of visceral damage following penetrating trauma, while delayed signs of visceral damage support the role of repeated examination and radiological input, even in the absence of external damage.

In the context of total operative procedures performed, laparotomies comprised a significant component of total surgical workload, encompassing 12-23% of all paediatric procedures performed(62,78,93). Children were more likely to require laparotomies following combat trauma compared to paediatric non-combat, and primarily blunt, abdominal trauma (13 vs 2%). Children in combat zones were also twice as likely to undergo laparotomies compared to US service personnel (12% vs 6%)(76). In addition to the high prevalence of abdominal injuries, children frequently swallow air when frightened or in pain, resulting in gastric dilation. As well as increasing vomiting risk, this may erroneously suggest abdominal injury(90) and lead to laparotomy. Despite this, Arafat et al(14) noted that only 8% of laparotomies were negative, supporting the role of explorative laparotomies in penetrating trauma following blasts.

Compared to both adults and children in non-conflict settings, the blast injured child is more likely to sustain injuries to the chest. While abdominal injuries are less frequent, they are more likely to involve visceral damage and require operative management compared to adult combat trauma.

3.3.5 Extremity injury

Extremity injury is one of the defining features following blast related trauma. Extremity injuries within conflict zones are observed in just under half of children (45%), its prevalence
increasing in blast injuries (69%)(53), with a retrospective study finding 100% of traumatic amputations and 96% of bone injuries to hand and foot were secondary to blast injuries(19).

Studies describe extreme variation in the prevalence of upper limb injuries following blasts, ranging from 6-74% (11,13,15–17,19,26,30,31,51,52,62,63,73,78–80), with the greatest upper limb injury reported following UXO and cluster munition strike(31,41). Compared to adult and particularly following ERW blast, children were more likely to sustain upper limb injuries (18,20–23,63) with a corresponding increase of 150-300% requiring operative amputation, typically at the level of the finger (16,21,22,48). Traumatic amputation of the upper limb was common and limited to the hands in 44-94% of children sustaining upper limb injuries(17,31), while trans-radial and trans-humeral amputation was less frequent (14-34%)(52,62) but were more likely to be bilateral(64). Arm fractures necessitating surgical fixation were observed in 45%(73), while upper limb vasculature was commonly disrupted(36,52,79).

Similarly, prevalence of lower limb injuries shows variation between studies on blast affecting 25-86% of children(11,15–17,26,30,31,51,52,62,63,73), with landmine strikes particularly associated with lower limb injury(11,16,31); 20-29% required operative amputations, normally at the trans-tibial plane(16,17,64). Lower limb injuries were less common in children compared to adults(18,20,22–24), with incidence lowest in 0-3 year olds(54), while increasing in adolescents to mirror adults(18). Traumatic amputations were less frequent compared to the upper limb, occurring in 14-35% of lower limb injuries(31,52,62).

Landmines drive debris, footwear and clothing upward between planes of the soft tissues and bone, leading to degloving injuries of the leg, perineum and lower abdominal viscera, as well creating serious potential for soft tissue and bone infection in the remaining limb(85,91). While large bony defects of the lower limb are problematic in children(94), reconstruction with limited shortening (<2 cm) has been associated with good outcomes, with the capability for highly active growth plates to remodel and compensate for this (19,95). However, 75% of new growth occurs in the distal femur and tibia growth plates, with the distal limb most prone to explosive disruption(85).

The long term physical, psychosocial and financial repercussions of amputation must not be underestimated. Physical complications are greatest following TA and below knee amputations, and include anterior and varus bowing, heterotopic ossification and osseous overgrowth requiring operative or prosthetic revision(96). Overgrowth is particularly problematic in younger patients (under 12 years), with 15% of patients sustaining amputations requiring re-vision of their stump. Protracted phantom limb sensation (PLS) and phantom limb pain (PLP) is reported in over 50% of children following blast related amputation, similar to
that seen in adult literature following blasts(97), yet over five times higher than in children requiring amputation following non-traumatic indications such as malignancy. Increased PLS has been reported in lower limb amputations, while PLP was increased in upper limb amputations (22,100). Social acceptance of the child amputee is culturally specific, with stigmatisation in certain cultures negatively impacting the child’s psychological, social and educational status(98). While there is a paucity of outcome and long term costing studies in LMICs, the financial burden of prolonged rehabilitation and repeated revision of prosthesis on the children and host country’s health system is likely to be considerable(98).

Like adults involved in blast trauma, older and adolescents children are prone to extremity injury, particularly of the upper limb, while infants and toddlers experience less extremity injuries. Limb injury causes diverse complications in the growing child with increased requirement for re-revision compared to adults.

3.3.6 Burn injuries

Multiple retrospective studies have noted that the majority of burns in children result from civilian mechanisms such as scalding, open fires and flash burns from household cooking fuels (28,35,47,99,100), while approximately 9-12% is the result of high-order explosives observed in combat blast modalities(47,100), less than observed in adult combat populations (52%)(101). Unlike civilian mechanisms however, blast-induced burns rarely occur in isolation, with multidimensional injuries playing a significant role in the child’s prognosis(55,80,100). While post-mortem findings following the Syrian Civil War attributed only 0.5% of deaths being secondary to burns(32), conflict-related burn victims had higher mortality compared to non-conflict related burn victims (47% vs 3%)(99), and significantly greater than blast related burns in adult military populations (5%)(101). Severe burns following blasts were sustained in 30% of children, and fatal in 36-40%(30,37).

Creamer(38) noted the median age of burn victims as 6 years old. At this young age, the anatomical disproportionality of the child increases the total body surface area (TBSA), resulting in significant burn surface area (BuSA). Thus, approximately half of paediatric burns in conflict zones result in BuSA >15% (32,127), while 13% of children have BuSA exceeding 40%(127). A high BuSA exceeding 40% has been linked to myocardial damage and hypotension, making hemodynamic management challenging, while complications including nosocomial infection of the burn eschar and pneumonia are not uncommon(99). Within LMICs, protein loss and weight based fluid resuscitation is complicated by malnourishment, while cold fluids may accentuate hypothermia(47).
In conflict related burns, the head and neck are most frequently affected, potentially leading to thermal inhalation injuries(55,100). Thermal inhalation injuries in paediatric victims are difficult to assess, and clues to inhalational injuries such as increased respiratory rate may be incorrectly interpreted in the context of physiological age discrepancies. In addition the paediatric subglottis represents the narrowest section of the upper airway, and deteriorates rapidly from burn-induced laryngeal oedema, especially in the context of failed intubation attempts(102) leading to rapid oxygen desaturation. Between 21-33% of children were identified as having inhalational injuries requiring pre-emptive or immediate intubation to protect the airways(55,61), similar to that seen in adult combat casualties (26%)(101). Of this paediatric cohort with inhalational injuries, 39% died(55), significantly greater than in adult populations (4%)(101).

Prognosticating factors noted for burns include increased time to presentation, prolonged hospital length of stay and requirement for critical care input(99). This relates to the resource-intensive management of the paediatric burns patient. Like adults, hospital length of stay for burns patients are 2-3 times that of the general paediatric population(15,100), while ICU requirements are increased, particularly in burns secondary to blast injuries(99,100). Operative demands of paediatric burn victims are significant. Children aged 6 months to 3 years were between 4-14 times more likely than adults to require surgical input, reflecting the significant burden of burns (39% of this cohort compared to 2-6% in adults(103)). While other conditions may be treated by a single operation, burns often require serial procedures(103), with an average 2 operations per patient. This creates a disproportionate operative volume in both adults and paediatric patients compared to other surgical emergencies(103). Burns induced by blast injuries require more escharotomies (27% vs 4% P<0.001) and fasciotomies (67% vs 30% P=0.002) when compared to civilian burn mechanisms(99).

Additionally, the requirement for post-operative support and rehabilitation add to the resource requirements. Children are rarely left without functional sequelae, with limited joint mobility and impaired tactile sensation presenting significant future challenges for rehabilitation(104), while high rates of psychological morbidity including suicidal ideation have been reported in adolescents(105). Under-resourcing psychological and functional rehabilitation will likely lead to high rates of morbidity and mortality(103). The degree to which these services are available within conflict zones and LMICs is uncertain. Ethical questions naturally arise when performing interventions where health systems are unlikely to address a child’s long term needs. Examination of existing paediatric burn services within zones of interest and longer term follow up of paediatric blast burn patients are required to determine the problems and needs for this cohort.
3.4 Service provision

Relative to total admissions, paediatric victims affected by blasts constitute a disproportionately large resource burden on operative workload, as well as intensive care and hospital beds. Approximately 47-82% of paediatric blast victims require surgery(14,15,54,78,80), particularly adolescents(54). The requirement for multiple operative procedures were common in the paediatric cohort, especially in burn and orthopaedic surgery due to the requirement for surgical revision (34-80% of children required ≥2 procedures(15,17,19,30,34,35,37,67); 25% required ≥4 procedures)(35). Operative requirement was greatest in 9-14 year olds, requiring on average 5 procedures per patient, prolonged ICU and hospital stay, while 0-3 year olds required the least operative management(39). This study suggested the reduced requirement for operative input in 0-3 year olds may be due not only to the reduced burden of extremity injuries requiring repeated debridement, but potentially because the equipment was inappropriate for this young cohort. This is supported by observations that infants and young children aged 0-10 years old with an Injury Severity Score ≥15 were 4x less likely to go to surgery compared to adults, while adolescents (11-15 years) were 2x more likely to receive operative input(54).

Multidisciplinary surgical services were required in 80% of patients, with orthopaedic, plastic, general neurosurgical, ophthalmic and vascular surgeons often working in partnership(52). Debridement and primary skin closure represented the most common procedure, in 35-100% of studies(15–17,51,62,73,76,78), in keeping with shrapnel injuries leading to multiple and frequently contaminated superficial injuries(51,73). Children are likely to do well with thorough debridement, with well perfused tissues allowing optimal healing and scar formation(19,95).

Retrospective studies of US military medical treatment facilities (MTF) in Afghanistan have found that while children comprised only 3-6% of their total admissions, this demographic required approximately double the total bed spaces (7-11%)(27,38,61), and on average 3x the length of stay (LOS) of coalition troops admitted over the same time period(27,76). Approximately 40% of paediatric admissions required a LOS exceeding 7 days, while, in half, the LOS exceeded 14 days(10,80). Spinella et al noted that while children aged 11-17 were the greatest proportion of children occupying beds, <1 year old cohort had the longest stay(76). This contrasts with other studies finding young children <8 years old had the shortest LOS, while children(8-14 years old) had the longest(27,37).

A similar burden is observed in the intensive care unit (ICU), with between 20-45% children requiring ICU admission(5,14,15,40,55,61,67,74,80), the majority following explosive or ballistic trauma. Children were often younger (0-10 years old)(54), with one recent study noting
children aged <1 year and 1-4 years most often requiring admission (53 & 66% respectively) (74). Children under 8 required an ICU LOS over twice that of children aged >8 years (60). Harris et al (5) noted that despite representing only 12% of admissions, children occupied on average 35% of ICU beds, with a brief surge in numbers resulting in 100% occupancy from children, the majority requiring ventilatory and ionotropic support. This specialised service was often provided by non-paediatric experts, which could result in 2 healthcare providers per paediatric patient (5). Ventilatory equipment is often age specific, and although multiple examples of ingenuity and adaptation of adult equipment exist (5, 67), children may overwhelm the unprepared MTF.

One of the key challenges is providing sustainable health services in the host country. MTFs may be capable of delivering exceptional paediatric care in the acute phase following blasts, but recovery from morbidity is dependent on long term rehabilitation (95) normally provided by the host country. Not only can this place exceptional strain on local health authorities, but if provisions are not available, the child is likely to undergo a protracted decline (5, 95).

Reasons for the high rate of admission and prolonged stay may be multifactorial. Admission criteria for host nationals to a coalition MTF typically require threat to life, limb, or eyesight, with resulting prolonged stay. Interestingly however, children with mild to moderate traumata are three times more likely than adults to be admitted (54). This may reflect a lack of certainty in initial assessment of injury severity from health practitioners unaccustomed to dealing with children. Within conflict zones, rearwards evacuation of civilians is not always possible, and health interventions such as ventilatory support may not be sustainable by host countries without deterioration in service standards, leading to prolonged admission until the child can be safely moved (5).

Following up recovery is a recurring theme when exploring long term challenges of blast injuries in children (6). Children are a complex cohort to monitor. Geographical displacement, particularly in the context of a conflict, increases the likelihood of this vulnerable cohort being lost to follow-up. This can impact not only the child’s rehabilitation and coordination with local health authorities, but also cause difficulty in assessing long-term functional outcomes which are needed to detect future health needs. Increasingly there is recognition of the need for formalised trauma registries accessible in the host country, assisting the follow-up of this vulnerable demographic (6, 37, 38, 61).

4. Summary

Compared to adults:
• Mortality due to blast injuries decreases with increasing age.
• UXO injuries are more prevalent in the child and result in higher numbers of multiple casualties per incident.
• Vascular injury due to blast is similar between older children/adolescents and adults.
• Male children are more likely than females to be injured by blast, in keeping with adult demographics.
• Children have a higher incidence of head injuries, facial injuries, eye injuries and chest injuries than adults.
• Abdominal injuries, although they occur less frequently, are more likely to require operative management.
• Upper limb injuries and amputations are more frequent; the opposite is true for lower limb injuries.
• Burns injuries are excessively severe for young children, reflecting the anatomical disproportionality of the very young, and fatalities are far higher for those with inhalation injuries.
• Children have a disproportionate requirement for both operative and non-operative service resources.

5. Conclusion

Apart from their focus on paediatric blast, all the papers in this review have one thing in common. Their research is based on those child patients injured by blast in conflict zones, post-conflict zones and low resource environments. Most paediatric blast injury is inflicted in these settings but is not exclusive to them. In Britain in May 2017, a bomb detonated at the Manchester Arena killing 23 people and injuring 139, most of whom were children. The attack placed a sudden and significant burden on medical services in the city, which had no experience of paediatric blast injury in the 21st century, let alone on this kind of scale.

Wherever in the world they live, and whatever the circumstances of the explosion, the social and anatomical profile of children makes them uniquely vulnerable to one of the most complex and demanding trauma conditions that any medical professional or system can treat. This paper has characterised paediatric blast as a diverse injury pattern, which must be seen as distinct from its adult equivalent. This pattern should be fully understood from point of wounding through the post-operative and rehabilitation phases of treatment. This continuum approach would enable both better long-term care of the patient, and improved support of medical systems bearing the intense burden of that care.
It remains to be seen whether the monitoring of the long term effects of paediatric blast injury in well-resourced environments is any better than that in areas of instability. Monitoring of patient outcomes should be integrated with the monitoring of treatment so that relevant practice and skills can be continually assessed. It is urgent that the understanding of paediatric blast injury is given focus and structure, not just for the likely significant patient cohort of the future but for those suffering today as blast injured children surviving into blast-blighted adulthood, wherever they live in the world.

References

20. Bilukha OO, Brennan M, Woodruff BA. Death and Injury from Landmines and

32. Celikel A, Karaarslan B, Demirkiran DS, Zeren C, Arslan MM. A series of civilian

https://mc.manuscriptcentral.com/bmjpo

80. Waisman Y, Aharonson-Daniel L, Mor M, Amir L, Peleg K. The impact of terrorism on

87. Regional K, Regional O, Florida I. Comparison of Outcomes for Pediatric Trauma at Different Types of Trauma Centers: The Unresolved Mystery. 2016;1054–8.

89. Eastridge BJ, Salinas J, Ph D, Wade CE, Ph D, Blackbourne LH. Hypotension is 100 mm Hg on the battlefield. AJS. 2011;202(4):404–8.

97. Article O. The Experience of Phantom Limb Pain in Patients With Combat-Related Traumatic Amputations. 2008;
Figure 1. Gender differences in casualties following blast
Figure 2. Percentage of Casualties (injuries and fatalities) by specific modalities
Blast Injuries in Children: a mixed-methods narrative review.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Paediatrics Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjpo-2019-000452.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>19-Mar-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Milwood Hargrave, John; Bioengineering Bull, Anthony; Dept of Bioengineering Pearce, Phillip; Dept of Bioengineering Mayhew, Emily; Imperial College London, Bioengineering Taylor, Sebastian; Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paediatric Practice, Paediatric Surgery, Accident & Emergency, General Paediatrics</td>
</tr>
</tbody>
</table>
Title:

Blast injuries in children: a mixed-methods narrative review

Authors:

Corresponding author:

Emily Mayhew
Dept. of Bioengineering, Imperial College London
Queensgate
London SW7 2AZ
Tel: 074949 63074
Email: e.mayhew@imperial.ac.uk

Authors:

John F.S. Millwood Hargrave,
South Thames Foundation School
Royal Army Medical Corps
208 Field Hospital, London, UK

A.Phillip Pearce,
Centre for Blast Injury Studies
Imperial College London
Queensgate
London SW7 2AZ

Emily R. Mayhew,
Dept of Bioengineering
Imperial College London
Anthony M.J. Bull,
Dept of Bioengineering
Imperial College London
Queensgate
London SW7 2AZ

Sebastian Taylor
Royal College of Paediatrics and Child Health
5-11 St Theobald’s Road
London WC1X 8SH

Keywords: Paediatric, blast, trauma, conflict, outcomes

Wordcount: 5,336.

Patient and public involvement statement:
No patients or members of the public were involved in this review.
Key questions

What is already known on this topic?

- Approximately one in six children live in conflict zones, where exposure to blast injuries is not uncommon. Blast injuries have the potential to inflict significant mortality and morbidity upon the global paediatric population living in conflict zones.
- Describing the characteristics of injuries sustained by the paediatric population is essential in advancing local and global health policies. Despite this, common themes related to paediatric injury following to blasts are poorly described.

What this study hopes to add?

- Paediatric victims are most likely to be male, with victims following conflict and explosive remnants of war (ERW) typically 4-10 years old. Of these victims, arable occupation and poor educational status is related to level of exposure.
- Variability in mortality exists between age groups, with increased mortality is children under 8 years old compared to older populations (10-18% vs 4-7%). As with adults, proximity to health care facilities strongly influence mortality in these populations.
- Head injuries are the leading cause of death in 46-71% of paediatric victims, and strongly associated with facial and ocular injuries conferring significant social and economic implications to the victims.
- Penetrating trauma associated with vascular injuries occurs in 3-12% of children exposed to blast injuries, considerably higher than non-blast injuries from conflict (0.6-1%), with haemorrhage a major cause of paediatric fatalities. Injuries to the torso are associated with a high surgical workload, with children twice as likely to require surgical intervention following blast injuries compared to adults (12% vs 6%).
- Injuries to the extremities are seen in approximately half of children exposed to blast trauma, with upper limb injuries requiring between 1.5 to 3 times more operative intervention compared to adults. Functional repercussions of these injuries are significant, with 15% of traumatic amputations in the lower limb frequently requiring operative and prosthetic re-revision.
- Burn injuries following explosive injuries are less frequently seen compared to adults (9-12% vs 52%), but confer a significant mortality of 36-47%, higher than that seen in non-explosive related burns (3%) and adults (5%). There patients commonly require reoperation and intensive rehabilitation, adding to the burden upon services.
- An influx of paediatric patients can rapidly overwhelm health facilities, with between 47-82% of children requiring surgical intervention, of which 25% required over 4 procedures. Greater requirement for intensive care support in addition to prolonged inpatient and rehabilitative stays contributes to considerable service strain.
Abstract

Background and significance. Blast injuries arising from high explosive weaponry is common in conflict areas. While blast injury characteristics are well recognised in the adults, there is a lack of consensus as to whether these characteristics translate to the paediatric population. Understanding blast injury patterns in this cohort is essential for providing appropriate provision of services and care for this vulnerable cohort.

Methods. In this mixed-method review, original papers were screened for data pertaining to paediatric injuries following blasts. Information on demographics, morbidity and mortality and service requirements were evaluated. Patient and public involvement statement: No patients or members of the public were involved in this review.

Results. Children affected by blast injuries are predominantly male and their injuries arise from explosive remnants of war, particularly unexploded ordnance. Blasts show increased morbidity and mortality in younger children, while older children have injury patterns similar to adults. Head and burn injuries represent a significant cause of mortality in young children, while lower limb morbidity is reduced compared to adults. Children have a disproportionate requirement for both operative and non-operative service resources, and provisions for this burden are essential.

Conclusions. Certain characteristics of paediatric injuries arising from blasts are distinct from that of the adult cohort, while the intensive demands on services highlights the importance of understanding the diverse injury patterns in order to optimise future service provisions in caring for this vulnerable cohort.
Introduction

Approximately one in six children live in conflict zones, with the main global burden borne by citizens of low and middle income countries (LMICs)(1). Children enmeshed in conflict and post-conflict zones are frequently exposed to high-order explosives (HE), either through explosive remnants of war (ERW) such as landmines and unexploded ordinance (UXOs), military ordinance such as shelling and aerial bombardments or acts perpetrated by non-state actors such as improvised explosive devices (IEDs) and suicide bombing(2). HE can inflict unique and unusual injuries upon the child through the blast over-pressure wave (primary blast injury), energisation of materials causing fragmentation (secondary blast injury), bodily displacement or crush injuries (tertiary blast injuries) and through burns, inhalation, toxic or psychological trauma (quaternary blast injuries)(3).

Article 3.3 of the UN Convention on the Rights of the Child (UNCRC) states that medical care of the child be delivered and supervised by providers competent in that field(4). However, paediatric care in conflict zones is often delivered by personnel for whom experience of dealing with paediatric blast injuries is unusual(5). Primary studies increasingly recognise the complex patterns of injury sustained in the adult population following blast exposure(3), however there is a lack of consensus as to whether applying lessons learnt from the adult population translates appropriately into paediatric cohorts(6). Bree et al(7) argue that principles for life-saving interventions, such as prioritising catastrophic haemorrhage, airway, breathing and circulation are just as applicable in children as adults. Conversely Fendya et al(8) contend that directly applying adult trauma principles to the paediatric population neglects the social, anatomical, physiological and psychological differences between adults and children, affecting the validity of these inferences.

While primary studies have described injuries sustained by the blast injured child, no study has attempted to synthesise the data to identify recurrent characterises in this vulnerable cohort. Understanding the characteristics of such injuries to the paediatric population will advance efforts to prevent, mitigate, and treat these injuries in domestic and deployed health systems(3). The aim of this review is to provide an overview of injury patterns and challenges in caring for the blast-injured child, in order to define future research needs for protection, mitigation, immediate medical treatment, and rehabilitation.

Methods

In this mixed-methods review, original peer-reviewed quantitative, qualitative and mixed-method observational studies, in addition to grey literature, were screened for data on...
explosive injuries in paediatric cohorts. By utilising all study designs, greater capture of relevant literature was achieved, although this meant the data was unsuitable for a formal systematic review. PubMed and Scopus (including Embase) were searched. Search terms including “Paediatric” OR “Pediatric” OR “Child*” OR “Children” AND “Blast” OR “Explosi*” OR “Explosion” were used to capture potential studies. Articles had to be written in English and published before December 16, 2018. Studies involving adult as well as children were included, in addition to articles where the mechanism of injury was mixed. This decision was taken in order to accurately reflect the settings the studies represent, where victims in conflict zones are heterogenous and subject to a variety of combat related mechanisms. Studies were omitted if they did not specify explosive mechanisms or include children.

Children are defined as all humans under the age of eighteen years (as specified by the United Nations Convention on the Rights of the Child)(4). The heterogeneity and arbitrary nature of what defines a child is acknowledged, and studies often utilise individual definitions. Within this review ages are defined thus: <1 year are infants, 1-8 are young children; 9-13 are older children and 14-18 are adolescents.

Patient and public involvement statement:

No patients or members of the public were involved in this review.
Results

(Figure 1: Study selection)

Study selection of the 74 studies included in this review are shown in figure 1. Of these, 26 utilise trauma registries (table 1), 26 single centre hospital based case series (table 2), 8 use multi-centre hospital based case series (table 3), 13 use community surveillance (table 4) while 1 uses grey literature (table 5).

Table 1. The 26 studies utilising trauma registries

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>138</td>
<td>Paediatric (100%)</td>
<td>IEDs/Suicide (67%) GSW (25%) Other (8%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2000-2004</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>115</td>
<td>Paediatric (8%) Adult (92%)</td>
<td>Suicide IEDs (100%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2000-2002</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>148</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (66%) GSW (34%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2010-2013</td>
<td>Iraq</td>
<td>Civilian</td>
<td>2803</td>
<td>Paediatric (13%) Adult (87%)</td>
<td>IEDs (49%) Other/Unknown (41%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2013</td>
<td>Israel</td>
<td>Military</td>
<td>84</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%) GSW (23%) Non-Combat (10%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2001-2011</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>128582</td>
<td>Paediatric (6%) Adult (94%)</td>
<td>Non-Combat (40%) IEDs/Shelling (38%) GSW (22%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2003-2011</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>549</td>
<td>Paediatric (100%)</td>
<td>Non-Combat (84%) IEDs/Shelling (11%) Other/Unknown (5%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2004-2007</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>2090</td>
<td>Paediatric (100%)</td>
<td>GSW (29%) IEDs/Shelling (24%) Other/Unknown (22%) Non-Combat (25%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2006-2008</td>
<td>Iraq</td>
<td>Military</td>
<td>25</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (72%) GSW (28%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>4913</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (100%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>6273</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (23%) GSW (16%) Other/Unknown (4%) Non-Combat (57%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2002-2010</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>4928</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (100%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2003-2014</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>27</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (59%) GSW (26%) Non-Combat (15%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2010-2011</td>
<td>Pakistan</td>
<td>Civilian</td>
<td>103</td>
<td>Paediatric (10%) Adult (86%)</td>
<td>IEDs (100%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2000-2003</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>906</td>
<td>Paediatric (7%) Adult (93%)</td>
<td>IEDs (100%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2008-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>766</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (51%) GSW (28%) Non-Combat (21%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>3439</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (38%) GSW (20%) Non-Combat (11%) Other/Not specified (31%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2001-2013</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>1113</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (60%) GSW (32%) Non-Combat (12%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2002-2009</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>744</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%) GSW (26%) Non-Combat (31%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>1996</td>
<td>USA</td>
<td>Civilian</td>
<td>66</td>
<td>Paediatric (100%)</td>
<td>IED (100%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>3388</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%) GSW (22%) Non-Combat (35%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2003-2011</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>813</td>
<td>Paediatric (6%) Adult (94%)</td>
<td>IEDs/Shelling (77%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2002-2011</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>165</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (58%) GSW (37%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>2000-2002</td>
<td>Israel</td>
<td>Civilian</td>
<td>160</td>
<td>Paediatric (100%)</td>
<td>IEDs (67%) GSW (25%) Other/Not specified (11%)</td>
<td>Retrospective</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>2003-2009</td>
<td>Afghanistan</td>
<td>Iraq</td>
<td>176</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (59%) GSW (21%) Non-Combat (20%)</td>
<td>Retrospective</td>
<td>Military Trauma Registry</td>
</tr>
</tbody>
</table>
Table 2. The 26 studies utilising single centre hospital based case series

<table>
<thead>
<tr>
<th>Monitored period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-2000</td>
<td>Jordan</td>
<td>Civilian</td>
<td>226</td>
<td>Paediatric (10%) Adult (90%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Long term sequelae</td>
</tr>
<tr>
<td>2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>82</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (52%)</td>
<td>GSW (11%) Non-combat (37%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>1991</td>
<td>Kuwait</td>
<td>Civilian</td>
<td>152</td>
<td>Paediatric (12%) Adult (88%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Afghanistan</td>
<td>Military</td>
<td>204</td>
<td>Paediatric (28%) Adult (72%)</td>
<td>Non-combat (44%) IEDs/Shelling (30%)</td>
<td>GSW (20%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2009-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>89</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (79%) GSW (21%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2004-2005</td>
<td>Iraq</td>
<td>Military</td>
<td>85</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (29%)</td>
<td>Non-combat (44%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2001-2008</td>
<td>Turkey</td>
<td>Civilian</td>
<td>23</td>
<td>Paediatric (100%)</td>
<td>Landmines (87%) UXO (13%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2009-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>81</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%) GSW (21%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2013-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>1591</td>
<td>Paediatric (18%) Adult (82%)</td>
<td>IEDs/Shelling (77%) GSW (7%) Other/Unknown (16%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2006-2011</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>122</td>
<td>Paediatric (100%)</td>
<td>UXO (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2006-2013</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>29</td>
<td>Paediatric (28%) Adult (72%)</td>
<td>UXO (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (7%) GSW (1%) Other/Not specified (9%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Afghanistan</td>
<td>Military</td>
<td>15</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (87%) Other/Not specified (6%)</td>
<td>Non-conflict (7%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>79</td>
<td>Paediatric (10%) Adult (90%)</td>
<td>IEDs/Shelling (63%) GSW (31%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>1991-1992</td>
<td>Croatia</td>
<td>Military</td>
<td>1211</td>
<td>Paediatric (13%) Adult (87%)</td>
<td>IEDs/Shelling (95%) GSW (3%) Other/Not specified (2%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>112</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (54%) GSW (29%) Non-conflict (17%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Afghanistan</td>
<td>Military</td>
<td>88</td>
<td>Paediatric (35%) Adult (65%)</td>
<td>IEDs/Shelling (33%)</td>
<td>Non-conflict (67%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2007-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>43</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%) GSW (5%)</td>
<td>Non-combat (28%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2003-2004</td>
<td>Iraq</td>
<td>Military</td>
<td>113</td>
<td>Paediatric (3%) Adult (97%)</td>
<td>IEDs/Shelling (64%) GSW (2%)</td>
<td>Non-combat (36%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2004</td>
<td>Iraq</td>
<td>Military</td>
<td>99</td>
<td>Paediatric (100%)</td>
<td>GSW (42%) IEDs/Shelling (35%)</td>
<td>Other/Not specified (21%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2008-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>31</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (49%) GSW (32%)</td>
<td>Non-combat (23%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2010-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>263</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (42%) GSW (17%)</td>
<td>Non-conflict (41%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>281</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (47%) GSW (13%)</td>
<td>Non-combat (39%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>2019-2015</td>
<td>Bosnia</td>
<td>Civilian</td>
<td>92</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling/UXO (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2006-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>295</td>
<td>Paediatric (100%)</td>
<td>IED (68%) UXO (4%) Other/Not specified (28%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2006-2007</td>
<td>Afghanistan</td>
<td>Military</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (64%) GSW (37%) Other/Not specified (5%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2010-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>41</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (47%) GSW (12%)</td>
<td>Non-combat (42%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
</tbody>
</table>

Table 3. The 8 studies utilising multi-centre hospital based case series

<table>
<thead>
<tr>
<th>Monitored period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-2013</td>
<td>Syria</td>
<td>Civilian</td>
<td>324</td>
<td>Paediatric (18%) Adult (92%)</td>
<td>Landmines (57%) GSW (43%)</td>
<td>Retrospective. Multi centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2003-2006</td>
<td>Cambodia</td>
<td>Civilian</td>
<td>356</td>
<td>Paediatric (26%) Adult (74%)</td>
<td>Landmines (67%) UXO (33%)</td>
<td>Retrospective. Multi centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Syria</td>
<td>Civilian</td>
<td>186</td>
<td>Paediatric (22%) Adult (78%)</td>
<td>IEDs/Shelling (67%) GSW (26%)</td>
<td>Retrospective. Multi centre Hospital based mortality case series</td>
<td></td>
</tr>
<tr>
<td>2012-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>140</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (70%) GSW (14%) Other/Unknown (16%)</td>
<td>Retrospective. Multi centre Hospital based mortality case series</td>
<td></td>
</tr>
</tbody>
</table>

https://mc.manuscriptcentral.com/bmjpo
Table 4. The 13 studies utilising community surveillance

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Location</th>
<th>Setting</th>
<th>Sample</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al (1995/96)</td>
<td>Afghanistan</td>
<td>Bosnia</td>
<td>Cambodia</td>
<td>Mozambique</td>
<td>Civilian</td>
<td>2100</td>
<td>Paediatric (100%)</td>
</tr>
<tr>
<td>Bilukha et al (2013/74)</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>1636</td>
<td>Paediatric (40%)</td>
<td>Adult (54%)</td>
<td>UXO (47%)</td>
<td>Landmine (41%)</td>
</tr>
<tr>
<td>Bilukha et al (2007/71)</td>
<td>Chechnya</td>
<td>Civilian</td>
<td>3021</td>
<td>Paediatric (30%)</td>
<td>Adult (70%)</td>
<td>Landmines (41%)</td>
<td>UXO (37%)</td>
</tr>
<tr>
<td>Bilukha et al (2005/72)</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>5471</td>
<td>Paediatric (54%)</td>
<td>Adult (46%)</td>
<td>UXO (50%)</td>
<td>Landmines (42%)</td>
</tr>
<tr>
<td>Bilukha et al (2006/10)</td>
<td>Nepal</td>
<td>Civilian</td>
<td>307</td>
<td>Paediatric (58%)</td>
<td>Adult (42%)</td>
<td>IEDs (76%)</td>
<td>Landmines (41%)</td>
</tr>
<tr>
<td>Bilukha et al (2008/11)</td>
<td>Nepal</td>
<td>Civilian</td>
<td>437</td>
<td>Paediatric (14%)</td>
<td>Adult (76%)</td>
<td>IEDs (69%)</td>
<td>Other/Unknown (31%)</td>
</tr>
<tr>
<td>Guerrero et al (2014/74)</td>
<td>USA</td>
<td>Civilian</td>
<td>11</td>
<td>Paediatric (100%)</td>
<td>Adult (66%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. Community surveillance</td>
</tr>
<tr>
<td>Guha-Sapir et al (2018/76)</td>
<td>Syria</td>
<td>Civilian</td>
<td>101453</td>
<td>Paediatric (17%)</td>
<td>Adult (83%)</td>
<td>Shelling/Air bombardment (57%)</td>
<td>Other/Not specified (43%)</td>
</tr>
<tr>
<td>Hameed et al (2015/77)</td>
<td>Iraq</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>Cross-section</td>
</tr>
<tr>
<td>Kazem et al (2015/78)</td>
<td>Bosnia and Herzegovina</td>
<td>Civilian</td>
<td>4064</td>
<td>Paediatric (14%)</td>
<td>Adult (86%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Community surveillance</td>
</tr>
<tr>
<td>Mousavi et al (2015/79)</td>
<td>Iran</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Adult (90%)</td>
<td>Landmines (80%)</td>
<td>UXO (20%)</td>
</tr>
<tr>
<td>Pat-Horenczyk et al (2007/80)</td>
<td>Israel</td>
<td>Civilian</td>
<td>695</td>
<td>Paediatric (100%)</td>
<td></td>
<td>IEDs (100%)</td>
<td>Retrospective. Mixed-method community surveillance</td>
</tr>
<tr>
<td>Spina et al (2016/81)</td>
<td>Iran</td>
<td>Civilian</td>
<td>41</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (100%)</td>
<td>Retrospective. Mixed-method community surveillance</td>
</tr>
</tbody>
</table>

Table 5. The 1 study utilising grey literature

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Location</th>
<th>Setting</th>
<th>Sample</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guha-Sapir et al (2015/82)</td>
<td>Syria</td>
<td>Civilian</td>
<td>78759</td>
<td>Paediatric (16%)</td>
<td>Adult (84%)</td>
<td>IEDs/Shelling (79%)</td>
<td>GW (25%)</td>
</tr>
</tbody>
</table>

Demographics

Following the use of explosive weaponry by non-state actors against civilians, the most commonly injured paediatric cohort are males aged 10-18 years old (9,11,33), while children involved in conflict and ERW blast injuries were generally aged between 4-10 years old (18,59).

Perpetrators target busy areas such as restaurants and nightclubs which older children and adolescents might frequent (10,11,33), while cultural factors within LMICs in these social areas result in a predominantly male cohort (9,10,12,22–24,33,67,75,80). Similar gender finding are observed in children following conflict and ERW related injuries where all studies showed male predominance in victims, with over 70% male in three quarters of the studies (Figure 2).

(Figure 2. Gender differences in in casualties following blast)
ERW contribute considerable morbidity and mortality both during and following conflict. As seen in figure 3, children were more likely to be injured by UXO compared with adults, while landmines affected a predominately adult cohort (35,37,41,62,69,70,72,73,78).

(Figure 3. Percentage of Casualties (injuries and fatalities) by specific modalities)

UXOs have been described as small, colourful and toy-like, promoting child interaction and subsequent injury from handling, resulting in often fatal upper limb, head, neck or chest injury(41,44,62,83,84). Due to the social nature of children, these interactions commonly occur in groups, leading to multiple casualties in 45-63% of events involving children compared to 30-40% in adults(70,78,79).

Occupation and education play a role in ERW injuries. It is common for children in LMICs, particularly males, to assist their family with herding and farming as opposed to attending school. This may affect the likelihood to exposure to ERWs through increased freedom to roam where such devices are present(25,42,64,72). A lack of formal education impacts the child’s ability to read warning signs; only 6-22% of victims were aware ERWs were present(27,80) and of these, only 0-11% had received ERW risk education(23,25,27,80).

Children are particularly vulnerable to wide-area explosives such as aerial bombardment and shelling, particularly in the primarily urbanised environments of modern conflicts. In the Syrian Civil War, three quarters of wide-area explosives were used in civilian residential areas that children frequent, with these mechanisms responsible for 82% of child deaths(76,82).

The following section reviews what is known of mortality in children before reviewing injury types.

Mortality

Comparison of paediatric wartime mortality data is difficult as many studies do not differentiate mechanism of injury. Edwards et al(85) study on 4,913 children between 2002-2010 presenting with blast injuries remains the single largest data set. The reported mortality rate of 8% matches well with the mortality rates of 6-9% quoted in paediatric trauma deaths from Iraq and Afghanistan, although these studies displayed all trauma mechanisms as opposed to specifying blast trauma(14,16,20,25,36,40). Between 2006-2013, Thompson et al. (58) noted a mortality rate over double of that quoted by Edwards et al. following paediatric blast injury.
in Afghanistan (18%). Operational tempo and the increasing use of IEDs have been hypothesized to underlie these discrepancies in mortality(58).

Age related variation in mortality has been described. Matos et al noted mortality was highest at 24% in young children (5-8 year old)(52) while Schauer et al and Spinella et al found greatest mortality in 0-4 years(30,68). Similarly, Borgman et al and Matos et al noted that children <8 years old had increased trauma mortality compared to 8-16 year olds (10-18% vs 4-7%)(15,52), while Spinella et al noted a similar increase in mortality in young children (<6 year old) compared to 6-16 year olds (11% vs 4%)(68). Few studies directly compare adult and paediatric mortality, and comparisons between studies are difficult due to methodological differences. What is common is that mortality in children following combat related trauma is considerably higher than that of paediatric non-combat trauma (2-3%)(86) and adult military combat casualties (1-3%)(87,88).

A wide range of paediatric mortality is reported following mine strikes, ranging from 4-46%(41,44,62,69–74,83). Shuker et al(89) suggested that approximately half of paediatric victims die within minutes of mine explosion, likely due to lacerations to the head, major blood vessels or vital organs causing non-survivable injuries, in keeping with adult literature(87,88). Time critical injuries following blasts may represent particular problems in LMIC’s, where pre-hospital evacuation chains may be protracted. Coupland(90) noted that in 1991, only 14% of paediatric and adult ERW victims were admitted in under six hours, while the majority (58%) were admitted between 6-24 hours and 28% presented after 24 hours. Even in recent conflicts, Bitterman et al(13) found <10% of children presented within 1 hour, with over a third presenting after 6 hours. Protracted evacuation of paediatric victims add to blast mortality, reinforced by studies observing a 85-91% mortality of children either at scene or en-route to health facilities(73,89).

Vascular injuries

Penetrating injuries occur in 38-76% of blast-exposed children (9,10,14,16,33,36,37,55), with incidence greater in older children aged 10-16 compared to 0-10 year olds (65-83% vs 47-63%)(22,52). In keeping with penetrating injury patterns, vascular injury was observed in 3-12% of children following blast trauma (9,32,33,37), considerably higher compared to non-blast conflict trauma where vascular injury occurred in 0.6-1% of paediatric victims(9,10,24,32,53).

Vascular damage and subsequent haemorrhage following explosions have been identified as a significant cause of childhood fatalities, ranging from the primary cause of death in 21-38%
during the Syrian Civil War(63,64) to 63% following IED and suicide attacks in Pakistan(67), while mortality rates following penetrating injuries in civilian settings are considerably lower (5%)(32). Extremity trauma was most highly associated with vascular injuries, with the majority of vascular injuries occurring in the lower limb (38-58%) followed by the upper limbs (25-28%)(17,32). This is in keeping with adult data where 54% of injuries were sustained to the extremities(87). Despite its high prevalence, extremity vascular wounds confer reduced risk of death compared to vascular damage within the torso, attributed as the primary cause of death in 71% of paediatric deaths and conferring a four-fold increased risk of death compared to extremity vascular injuries(32).

Data on vascular damage is clear: older children and adolescents sustain similar rates of vascular injury to adults, particularly to the extremities, while mortality following penetrating trauma is primarily the result of injuries to the vasculature within the torso.

Head injuries

The prevalence of head injuries following blasts are diverse, ranging from 6-54% (10,11,40,42,43,47–49,53,13,16,18,32,33,36,38,39), while adult combat data ranges from 16-29%(87). This variation is due to the heterogenous definitions of head injury described in these studies, with few studies differentiating between superficial scalp wounds, blunt traumatic brain injury (TBI) or penetrating TBI. Where head injuries were documented, TBI was recorded in 21-62% of paediatric victims, of which 38-39% were defined as penetrating(33,45,48). Unsurprisingly, papers noted over double the incidence of paediatric penetrating head injury in blast trauma compared to mainly blunt civilian trauma (13% vs 6%), while the reverse was true in closed head injuries, with half the incidence of closed head injuries in blast injuries compared to civilian trauma (22% vs 44%)(9).

Cerebral haemorrhage and direct cranial damage following blast have been attributed as a leading cause of death in children, responsible for 46-71% of fatalities (36–38,43,101). Creamer(38) noted penetrating wounds to the head accounted for 44% of child deaths in the emergency department while open skull fractures with cerebral evisceration was documented in 88% of paediatric fatalities following the 1995 Oklahoma City bombings(102). While penetrating head injuries undoubtedly carry high mortality, Woods(34) noted that 8 children survived to hospital discharge despite penetrating head injuries deemed initially unsurvivable, suggesting such are not unequivocally fatal.

Er et al(43) noted that children were more likely to be injured in the head compared to adults (54% vs 40%) following aerial and shelling during the Syrian Civil War, while young children
aged between 0-4 year old were more likely to undergo neurosurgical procedures compared to other ages(20,51), 48% of which were craniectomies or craniotomies for penetrating brain injury, mainly secondary to IED blasts(51). Suggested reasons for this increase may relate to anatomical predispositions, particularly in infants, such as large head to body ratios in addition to reduced skull rigidity(22) as well as the relatively shorter distance from the head to ground-based ERW and IEDs compared to adults(18,22,62,84,89).

There is a clear lack of studies investigating long term outcomes following blast- associated head injuries. While significant cognitive, intellectual and functional sequelae arising from non-blast TBI (nbTBI) have been described, controversy exists as to whether nbTBI is analogous to blast-induced TBI(91), and the paucity of paediatric data means this comparison is even more problematic.

A unifying message is that head injuries are associated with high morbidity and mortality in paediatric blast trauma, while the long term consequences remain largely unknown. Head injuries are commonly penetrating compared to civilian practice, and increased operative demand in infants and toddlers for neurosurgical procedures may stretch medical service expertise.

Facial and ocular injuries

Blasts result in injury to the face in between 27-48% of paediatric victims, compared to 12% resulting from GSW(11,18,49) and 10% in adults(87). Relative to other blast related injuries, facial injuries in isolation are associated with reduced mortality(18). However, Gataa (65) noted that of the patients presenting with facial injuries, 29% had concomitant eye injury, 22% had TBI, while life-threatening facial bleeding occurred in 10% of patients. In addition to physical sequelae, facial injuries are associated with functional and psychological disorders stemming from stigmatisation of disfiguring injuries with implications for future social, economic and marital prospects(65).

Despite only comprising of 0.3% of the anterior body surface, the eye is sensitive to blast injury, with ocular injuries in 4-28% of children following trauma related to combat or ERW (13,16,36,38,39,42,45,53,79). In keeping with patterns of facial injury, an increased prevalence of eye injury is associated with blast injuries compared to GSW (13% vs 3%)(11). Landmines are often associated with multiple foreign bodies on the conjunctiva, cornea and sclera, in addition to sight-threatening injuries such as enucleation or eye globe perforation(41). Monocular enucleation was observed in 4%, while bilateral enucleation, and hence blindness, was more common (14%)(41,79). When compared to adult victims of
landmines and cluster bombs, children have more eye injuries (14% vs 8%)(78) as well as twice the prevalence of eye globe perforation (28% vs 14%)(43) and complete loss of vision (21 vs 10%)(62). Without adequate support, both monocular and bilateral vision loss may translate to developmental and educational deficiencies in the growing child.

Facial and eye injuries are frequent following exposure to blasts, and should raise suspicion of intracranial injury. Important are the social and education implications of these disfiguring injuries in the growing child.

Torso Injuries

Following blast injury, trauma to the torso is common, varying from 12-46% between studies (11,13,41,43,47–49,67,16–18,32,36,38–40) and peaking in 5-10 year olds(22,33). Er et al.’s (43) study on civilian paediatric injuries during the Syrian Civil War noted that the abdomen was less commonly injured compared to adults (12 vs 20%), while chest injury with accompanying lung contusion was present in 51% of children with torso injuries, compared to 35% in adults. Both chest and abdominal injuries from blast are typically classed as ‘severe’(18). Abdominal injuries accounted for 18-19% of injury specific deaths following blast in the paediatric population, while chest injuries have been attributed to 8% of deaths in the ED(16). Explanations for this susceptibility to severe and life threatening torso injuries include a lack of body armour compared to adult combat victims and the observation that children have flexible rib cages allowing greater damage to underlying structures without rib fracture, contributing to the increase in lung contusion observed(32).

When organ specific injuries were examined, blast was most likely to cause open penetrating wounds of the bowel and intra-abdominal organs, affecting the small intestine in over a third (34%) and the liver, spleen or pancreas in 36%(16,54,61). Where internal organ damage was sustained, injury specific mortality almost doubled from 15 to 29%(63). These injuries were frequently contaminated due to bowel rupture, requiring multiple procedures and a high rate of antibiotic usage(57). The thinner abdominal walls, reduced intraabdominal fat and larger solid organs relative to the body cavity increases likelihood of visceral damage following penetrating trauma, while delayed signs of visceral damage support the role of repeated examination and radiological input, even in the absence of external damage.

In the context of total operative procedures performed, laparotomies comprised a significant component of total surgical workload, encompassing 12-23% of all paediatric procedures performed(25,58,92). Children were more likely to require laparotomies following combat trauma compared to paediatric non-combat, and primarily blunt, abdominal trauma (13 vs 2%).
Children in combat zones were also twice as likely to undergo laparotomies compared to US service personnel (12% vs 6%)(68). In addition to the high prevalence of abdominal injuries, children frequently swallow air when frightened or in pain, resulting in gastric dilation. As well as increasing vomiting risk, this may erroneously suggest abdominal injury(89) and lead to laparotomy. Despite this, Arafat et al(61) noted that only 8% of laparotomies were negative, supporting the role of explorative laparotomies in penetrating trauma following blasts.

Compared to both adults and children in non-conflict settings, the blast injured child is more likely to sustain injuries to the chest. While abdominal injuries are less frequent, they are more likely to involve visceral damage and require operative management compared to adult combat trauma.

Extremity injuries

Extremity injury is one of the defining features following blast related trauma. Extremity injuries within conflict zones are observed in just under half of children (45%), its prevalence increasing in blast injuries (69%)(49), with a retrospective study finding 100% of traumatic amputations and 96% of bone injuries to hand and foot were secondary to blast injuries(39).

Studies describe extreme variation in the prevalence of upper limb injuries following blasts, ranging from 6-74% (13,25,40,41,47,48,58,67,69,29,32,33,35–39), with the greatest upper limb injury reported following UXO and cluster munition strike(41,44). Compared to adult and particularly following ERW blast, children were more likely to sustain upper limb injuries (62,67,70–73) with a corresponding increase of 150-300% requiring operative amputation, typically at the level of the finger (37,66,71,72). Traumatic amputation of the upper limb was common and limited to the hands in 44-94% of children sustaining upper limb injuries(38,41), while trans-radial and trans-humeral amputation was less frequent (14-34%)(25,48) but were more likely to be bilateral(79). Arm fractures necessitating surgical fixation were observed in 45%(29), while upper limb vasculature was commonly disrupted(17,32,48).

Similarly, prevalence of lower limb injuries shows variation between studies on blast affecting 25-86% of children(13,25,48,67,29,35–38,40,41,47), with landmine strikes particularly associated with lower limb injury(35,37,41); 20-29% required operative amputations, normally at the trans-tibial plane(37,38,79). Lower limb injuries were less common in children compared to adults(62,70,72–74), with incidence lowest in 0-3 year olds(22), while increasing in adolescents to mirror adults(62). Traumatic amputations were less frequent compared to the upper limb, occurring in 14-35% of lower limb injuries(25,41,48).
Landmines drive debris, footwear and clothing upward between planes of the soft tissues and bone, leading to degloving injuries of the leg, perineum and lower abdominal viscera, as well creating serious potential for soft tissue and bone infection in the remaining limb (84,90). While large bony defects of the lower limb are problematic in children (93), reconstruction with limited shortening (<2 cm) has been associated with good outcomes, with the capability for highly active growth plates to remodel and compensate for this (39,94). However, 75% of new growth occurs in the distal femur and tibia growth plates, with the distal limb most prone to explosive disruption (84).

The long term physical, psychosocial and financial repercussions of amputation must not be underestimated. Physical complications are greatest following TA and below knee amputations, and include anterior and varus bowing, heterotopic ossification and osseous overgrowth requiring operative or prosthetic revision (95). Overgrowth is particularly problematic in younger patients (under 12 years), with 15% of patients sustaining amputations requiring re-vision of their stump. Protracted phantom limb sensation (PLS) and phantom limb pain (PLP) is reported in over 50% of children following blast related amputation, similar to that seen in adult literature following blasts (96), yet over five times higher than in children requiring amputation following non-traumatic indications such as malignancy. Increased PLS has been reported in lower limb amputations, while PLP was increased in upper limb amputations (22,100). Social acceptance of the child amputee is culturally specific, with stigmatisation in certain cultures negatively impacting the child’s psychological, social and educational status (97). While there is a paucity of outcome and long term costing studies in LMICs, the financial burden of prolonged rehabilitation and repeated revision of prosthesis on the children and host country’s health system is likely to be considerable (97).

Like adults involved in blast trauma, older and adolescents children are prone to extremity injury, particularly of the upper limb, while infants and toddlers experience less extremity injuries. Limb injury causes diverse complications in the growing child with increased requirement for re-revision compared to adults.

Burn injuries

Multiple retrospective studies have noted that the majority of burns in children result from civilian mechanisms such as scalding, open fires and flash burns from household cooking fuels (15,16,46,98,99), while approximately 9-12% is the result of high-order explosives observed in combat blast modalities (46,99), less than observed in adult combat populations (52%) (100). Unlike civilian mechanisms however, blast-induced burns rarely occur in isolation, with multidimensional injuries playing a significant role in the child’s prognosis (33,50,99).
While post-mortem findings following the Syrian Civil War attributed only 0.5% of deaths being secondary to burns (63), conflict-related burn victims had higher mortality compared to non-conflict related burn victims (47% vs 3%)(98), and significantly greater than blast related burns in adult military populations (5%)(100). Severe burns following blasts were sustained in 30% of children, and fatal in 36-40%(18,40).

Creamer (38) noted the median age of burn victims as 6 years old. At this young age, the anatomical disproportionality of the child increases the total body surface area (TBSA), resulting in significant burn surface area (BuSA). Thus, approximately half of paediatric burns in conflict zones result in BuSA >15% (32,127), while 13% of children have BuSA exceeding 40%(127). A high BuSA exceeding 40% has been linked to myocardial damage and hypotension, making hemodynamic management challenging, while complications including nosocomial infection of the burn eschar and pneumonia are not uncommon(98). Within LMICs, protein loss and weight based fluid resuscitation is complicated by malnourishment, while cold fluids may accentuate hypothermia(46).

In conflict related burns, the head and neck are most frequently affected, potentially leading to thermal inhalation injuries(50,99). Thermal inhalation injuries in paediatric victims are difficult to assess, and clues to inhalational injuries such as increased respiratory rate may be incorrectly interpreted in the context of physiological age discrepancies. In addition the paediatric subglottis represents the narrowest section of the upper airway, and deteriorates rapidly from burn-induced laryngeal oedema, especially in the context of failed intubation attempts(101) leading to rapid oxygen desaturation. Between 21-33% of children were identified as having inhalational injuries requiring pre-emptive or immediate intubation to protect the airways(50,53), similar to that seen in adult combat casualties (26%)(100). Of this paediatric cohort with inhalational injuries, 39% died(50), significantly greater than in adult populations (4%)(100).

Prognosticating factors noted for burns include increased time to presentation, prolonged hospital length of stay and requirement for critical care input(98). This relates to the resource-intensive management of the paediatric burns patient. Like adults, hospital length of stay for burns patients are 2-3 times that of the general paediatric population(36,99), while ICU requirements are increased, particularly in burns secondary to blast injuries(98,99). Operative demands of paediatric burn victims are significant. Children aged 6 months to 3 years were between 4-14 times more likely than adults to require surgical input, reflecting the significant burden of burns (39% of this cohort compared to 2-6% in adults(102)). While other conditions may be treated by a single operation, burns often require serial procedures(102), with an average 2 operations per patient. This creates a disproportionate operative volume in both
adults and paediatric patients compared to other surgical emergencies(102). Burns induced by blast injuries require more escharotomies (27% vs 4% P<0.001) and fasciotomies (67% vs 30% P=0.002) when compared to civilian burn mechanisms(98).

Additionally, the requirement for post-operative support and rehabilitation add to the resource requirements. Children are rarely left without functional sequelae, with limited joint mobility and impaired tactile sensation presenting significant future challenges for rehabilitation(103), while high rates of psychological morbidity including suicidal ideation have been reported in adolescents(104). Under-resourcing psychological and functional rehabilitation will likely lead to high rates of morbidity and mortality(102). The degree to which these services are available within conflict zones and LMICs is uncertain. Ethical questions naturally arise when performing interventions where health systems are unlikely to address a child’s long term needs. Examination of existing paediatric burn services within zones of interest and longer term follow up of paediatric blast burn patients are required to determine the problems and needs for this cohort.

Service provision

Relative to total admissions, paediatric victims affected by blasts constitute a disproportionately large resource burden on operative workload, as well as intensive care and hospital beds. Approximately 47-82% of paediatric blast victims require surgery(22,33,36,58,61), particularly adolescents(22). The requirement for multiple operative procedures were common in the paediatric cohort, especially in burn and orthopaedic surgery due to the requirement for surgical revision (34-80% of children required ≥2 procedures(16,18,36,38–40,42,54); 25% required ≥4 procedures)(16). Operative requirement was greatest in 9-14 year olds, requiring on average 5 procedures per patient, prolonged ICU and hospital stay, while 0-3 year olds required the least operative management(20). This study suggested the reduced requirement for operative input in 0-3 year olds may be due not only to the reduced burden of extremity injuries requiring repeated debridement, but potentially because the equipment was inappropriate for this young cohort. This is supported by observations that infants and young children aged 0-10 years old with an Injury Severity Score ≥15 were 4x less likely to go to surgery compared to adults, while adolescents (11-15 years) were 2x more likely to receive operative input(22).

Multidisciplinary surgical services were required in 80% of patients, with orthopaedic, plastic, general neurosurgical, ophthalmic and vascular surgeons often working in partnership(48). Debridement and primary skin closure represented the most common procedure, in 35-100% of studies(25,29,36–38,47,58,68), in keeping with shrapnel injuries leading to multiple and
frequently contaminated superficial injuries(29,47). Children are likely to do well with thorough debridement, with well perfused tissues allowing optimal healing and scar formation(39,94).

Retrospective studies of US military medical treatment facilities (MTF) in Afghanistan have found that while children comprised only 3-6% of their total admissions, this demographic required approximately double the total bed spaces (7-11%)(14,19,53), and on average 3x the length of stay (LOS) of coalition troops admitted over the same time period(14,68). Approximately 40% of paediatric admissions required a LOS exceeding 7 days, while, in half, the LOS exceeded 14 days(10,33). Spinella et al noted that while children aged 11-17 were the greatest proportion of children occupying beds, <1 year old cohort had the longest stay(68). This contrasts with other studies finding young children <8 years old had the shortest LOS, while children(8-14 years old) had the longest(14,18).

A similar burden is observed in the intensive care unit (ICU), with between 20-45% children requiring ICU admission(5,30,33,36,43,50,53,54,61), the majority following explosive or ballistic trauma. Children were often younger (0-10 years old)(22), with one recent study noting children aged <1 year and 1-4 years most often requiring admission (53 & 66% respectively)(30). Children under 8 required a ICU LOS over twice that of children aged >8 years (52). Harris et al(5) noted that despite representing only 12% of admissions, children occupied on average 35% of ICU beds, with a brief surge in numbers resulting in 100% occupancy from children, the majority requiring ventilatory and ionotropic support. This specialised service was often provided by non-paediatric experts, which could result in 2 healthcare providers per paediatric patient(5). Ventilatory equipment is often age specific, and although multiple examples of ingenuity and adaptation of adult equipment exist(5,54), children may overwhelm the unprepared MTF.

One of the key challenges is providing sustainable health services in the host country. MTFs may be capable of delivering exceptional paediatric care in the acute phase following blasts, but recovery from morbidity is dependent on long term rehabilitation(94) normally provided by the host country. Not only can this place exceptional strain on local health authorities, but if provisions are not available, the child is likely to undergo a protracted decline(5,94).

Reasons for the high rate of admission and prolonged stay may be multifactorial. Admission criteria for host nationals to a coalition MTF typically require threat to life, limb, or eyesight, with resulting prolonged stay. Interestingly however, children with mild to moderate traumata are three times more likely than adults to be admitted (22). This may reflect a lack of certainty in initial assessment of injury severity from health practitioners unaccustomed to dealing with children. Within conflict zones, rearwards evacuation of civilians is not always possible, and
health interventions such as ventilatory support may not be sustainable by host countries without deterioration in service standards, leading to prolonged admission until the child can be safely moved(5).

Following up recovery is a recurring theme when exploring long term challenges of blast injuries in children(6). Children are a complex cohort to monitor. Geographical displacement, particularly in the context of a conflict, increases the likelihood of this vulnerable cohort being lost to follow-up. This can impact not only the child’s rehabilitation and coordination with local health authorities, but also cause difficulty in assessing long-term functional outcomes which are needed to detect future health needs. Increasingly there is recognition of the need for formalised trauma registries accessible in the host country, assisting the follow-up of this vulnerable demographic(6,18,19,53).

Conclusion

Apart from their focus on paediatric blast, all the papers in this review have one thing in common. Their research is based on those child patients injured by blast in conflict zones, post-conflict zones and low resource environments. Most paediatric blast injury is inflicted in these settings but is not exclusive to them. In Britain in May 2017, a bomb detonated at the Manchester Arena killing 23 people and injuring 139, most of whom were children. The attack placed a sudden and significant burden on medical services in the city, which had no experience of paediatric blast injury in the 21st century, let alone on this kind of scale.

Wherever in the world they live, and whatever the circumstances of the explosion, the social and anatomical profile of children makes them uniquely vulnerable to one of the most complex and demanding trauma conditions that any medical professional or system can treat. This paper has characterised paediatric blast as a diverse injury pattern, which must be seen as distinct from its adult equivalent. This pattern should be fully understood from point of wounding through the post-operative and rehabilitation phases of treatment. This continuum approach would enable both better long-term care of the patient, and improved support of medical systems bearing the intense burden of that care.

It remains to be seen whether the monitoring of the long term effects of paediatric blast injury in well-resourced environments is any better than that in areas of instability. Monitoring of patient outcomes should be integrated with the monitoring of treatment so that relevant practice and skills can be continually assessed. It is urgent that the understanding of paediatric blast injury is given focus and structure, not just for the likely significant patient
cohort of the future but for those suffering today as blast injured children surviving into blast-blighted adulthood, wherever they live in the world.

References

32. Villamaria CY, Morrison JJ, Fitzpatrick CM, Cannon JW, Rasmussen TE. Wartime

45. Fares Y, Fares J, Gebeily S. Head and facial injuries due to cluster munitions. Neurol

71. Bilukha OO, Brennan M, Anderson M, Tsitsaev Z, Murtazaeva E, Ibragimov R. Seen but not heard: Injuries and deaths from landmines and unexploded ordnance in

86. Regional K, Regional O, Florida I. Comparison of Outcomes for Pediatric Trauma at Different Types of Trauma Centers: The Unresolved Mystery. 2016;1054–8.

88. Eastridge BJ, Salinas J, Ph D, Wade CE, Ph D, Blackbourne LH. Hypotension is 100 mm Hg on the battlefield. AJS. 2011;202(4):404–8.

96. Article O. The Experience of Phantom Limb Pain in Patients With Combat-Related Traumatic Amputations. 2008;

47580 potentially eligible studies identified by database and website searches

43147 identified for title screening

42241 excluded after title screening

906 abstracts screened

664 excluded after abstract screening

242 full-text articles assessed for eligibility

168 excluded
- 64 not specifying paediatric patients
- 52 not specifying explosive exposure type
- 18 not original research
- 16 could not access full text
- 15 incorrect topic
- 3 not in English

74 included in review
Blast Injuries in Children: a mixed-methods narrative review.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Paediatrics Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjpo-2019-000452.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>04-Jun-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Milwood Hargrave, John; Bioengineering Bull, Anthony; Dept of Bioengineering Pearce, Phillip; Dept of Bioengineering Mayhew, Emily; Imperial College London, Bioengineering Taylor, Sebastian; Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paediatric Practice, Paediatric Surgery, Accident & Emergency, General Paediatrics</td>
</tr>
</tbody>
</table>
Title:

Blast injuries in children: a mixed-methods narrative review

Authors:

Corresponding author:
Emily Mayhew
Dept. of Bioengineering, Imperial College London
Queensgate
London SW7 2AZ
Tel: 074949 63074
Email: e.mayhew@imperial.ac.uk

Authors:
John F.S. Millwood Hargrave,
South Thames Foundation School
Royal Army Medical Corps
208 Field Hospital, London, UK

A.Phillip Pearce,
Centre for Blast Injury Studies
Imperial College London
Queensgate
London SW7 2AZ

Emily R. Mayhew,
Dept of Bioengineering
Imperial College London
Anthony M.J. Bull,
Dept of Bioengineering
Imperial College London
Queensgate
London SW7 2AZ

Sebastian Taylor
Royal College of Paediatrics and Child Health
5-11 St Theobald’s Road
London WC1X 8SH

Keywords: Paediatric, blast, trauma, conflict, outcomes

Wordcount: 5,336.

Patient and public involvement statement:
No patients or members of the public were involved in this review.

Contributorship Statement

Professor Anthony Bull and Dr Emily Mayhew conceived the original analysis. Dr John Hargrave undertook the literature review, with guidance on structure and inclusion of sources by Dr Phil Pearce. Dr Anthony Bull advised on the bioengineering sections of the review. Dr Pearce and Dr Taylor advised on the medical sections of the review. Dr Emily Mayhew wrote the conclusion of the review. Dr Hargrave wrote the main body of the review and selected the material for the tables and figures. Dr Hargrave designed and completed the tables and figures. Dr Hargrave assembled the bibliography. All authors contributed to the critical interpretation of the results, and approved the final draft of the review.
Key questions

What is already known on this topic?
- Approximately one in six children live in conflict zones, where exposure to blast injuries is not uncommon. Blast injuries have the potential to inflict significant mortality and morbidity upon the global paediatric population living in conflict zones.
- Describing the characteristics of injuries sustained by the paediatric population is essential in advancing local and global health policies. Despite this, common themes related to paediatric injury following to blasts are poorly described.

What this study adds?
- Paediatric victims are most likely to be male, with victims following conflict and explosive remnants of war (ERW) typically 4-10 years old. Of these victims, agricultural occupation and poor educational status is related to level of exposure.
- Head injuries are the leading cause of death in 46-71% of paediatric victims, and strongly associated with facial and ocular injuries conferring significant social and economic implications to the victims.
- Injuries to the extremities are seen in approximately half of children exposed to blast trauma, with upper limb injuries requiring between 1.5 to 3 times more operative intervention compared to adults. Functional repercussions of these injuries are significant, with 15% of traumatic amputations in the lower limb frequently requiring operative and prosthetic re-revision.
- An influx of paediatric patients can rapidly overwhelm health facilities, with between 47-82% of children requiring surgical intervention, of which 25% required over 4 procedures. Greater requirement for intensive care support in addition to prolonged inpatient and rehabilitative stays contributes to considerable service strain.

Abstract

Background and significance. Blast injuries arising from high explosive weaponry is common in conflict areas. While blast injury characteristics are well recognised in the adults, there is a lack of consensus as to whether these characteristics translate to the paediatric population. Understanding blast injury patterns in this cohort is essential for providing appropriate provision of services and care for this vulnerable cohort.

Methods. In this mixed-method review, original papers were screened for data pertaining to paediatric injuries following blasts. Information on demographics, morbidity and mortality and service requirements were evaluated. The papers were written and published in English from
a range of international specialists in the field. Patient and public involvement statement: No patients or members of the public were involved in this review.

Results. Children affected by blast injuries are predominantly male and their injuries arise from explosive remnants of war, particularly unexploded ordinance. Blasts show increased morbidity and mortality in younger children, while older children have injury patterns similar to adults. Head and burn injuries represent a significant cause of mortality in young children, while lower limb morbidity is reduced compared to adults. Children have a disproportionate requirement for both operative and non-operative service resources, and provisions for this burden are essential.

Conclusions. Certain characteristics of paediatric injuries arising from blasts are distinct from that of the adult cohort, while the intensive demands on services highlights the importance of understanding the diverse injury patterns in order to optimise future service provisions in caring for this the child blast survivor.
Introduction

Approximately one in six children live in conflict zones, with the main global burden borne by citizens of low and middle income countries (LMICs)\(^1\). Children enmeshed in conflict and post-conflict zones are frequently exposed to high-order explosives (HE), either through explosive remnants of war (ERW) such as landmines and unexploded ordinance (UXOs), military ordinance such as shelling and aerial bombardments or acts perpetrated by non-state actors such as improvised explosive devices (IEDs) and suicide bombing\(^2\). HE can inflict unique and unusual injuries upon the child through the blast over-pressure wave (primary blast injury), energisation of materials causing fragmentation (secondary blast injury), bodily displacement or crush injuries (tertiary blast injuries) and through burns, inhalation, toxic or psychological trauma (quaternary blast injuries)\(^3\).

Article 3.3 of the UN Convention on the Rights of the Child (UNCRC) states that medical care of the child be delivered and supervised by providers competent in that field\(^4\). However, paediatric care in conflict zones is often delivered by personnel for whom experience of dealing with paediatric blast injuries is unusual\(^5\). Primary studies increasingly recognise the complex patterns of injury sustained in the adult population following blast exposure\(^3\), however there is a lack of consensus as to whether applying lessons learnt from the adult population translates appropriately into paediatric cohorts\(^6\). Bree et al\(^7\) argue that principles for life-saving interventions, such as prioritising catastrophic haemorrhage, airway, breathing and circulation are just as applicable in children as adults. Conversely Fendya et al\(^8\) contend that directly applying adult trauma principles to the paediatric population neglects the social, anatomical, physiological and psychological differences between adults and children, affecting the validity of these inferences.

While primary studies have described injuries sustained by the blast injured child, no study has attempted to synthesise the data to identify recurrent characterises in this vulnerable cohort. Understanding the characteristics of such injuries to the paediatric population will advance efforts to prevent, mitigate, and treat these injuries in domestic and deployed health systems\(^3\). The aim of this review is to provide an overview of injury patterns and challenges in caring for the blast-injured child, in order to define future research needs for protection, mitigation, immediate medical treatment, and rehabilitation.

Methods

In this mixed-methods review, original peer-reviewed quantitative, qualitative and mixed-method observational studies, in addition to grey literature, were screened for data on
explosive injuries in paediatric cohorts. By utilising all study designs, greater capture of relevant literature was achieved, although this meant the data was unsuitable for a formal systematic review. PubMed and Scopus (including Embase) were searched. Search terms including “Paediatric” OR “Pediatric” OR “Child*” OR “Children” AND “Blast” OR “Explosi*” OR “Explosion” were used to capture potential studies. Articles had to be written in English and published before December 16, 2018. Studies involving adult as well as children were included, in addition to articles where the mechanism of injury was mixed. This decision was taken in order to accurately reflect the settings the studies represent, where victims in conflict zones are heterogenous and subject to a variety of combat related mechanisms. Studies were omitted if they did not specify explosive mechanisms or include children.

Children are defined as all humans under the age of eighteen years (as specified by the United Nations Convention on the Rights of the Child)(4). The heterogeneity and arbitrary nature of what defines a child is acknowledged, and studies often utilise individual definitions. Within this review ages are defined thus: <1 year are infants, 1-8 are young children; 9-13 are older children and 14-18 are adolescents.

Patient and public involvement statement:

No patients or members of the public were involved in this review.
Results

Figure 1: Study selection

Study selection of the 74 studies included in this review are shown in figure 1. Of these, 26 utilise trauma registries (table 1), 26 single centre hospital based case series (table 2), 8 use multi-centre hospital based case series (table 3), 13 use community surveillance (table 4) while 1 uses grey literature (table 5).

Table 1. The 26 studies utilising trauma registries

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effet investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aharonson-Daniel et al (2003)</td>
<td>2000-2001</td>
<td>Israel</td>
<td>Civilian</td>
<td>138</td>
<td>Paediatric (100%)</td>
<td>IEDs/Suicide IEDs (67%)</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>Aharonson-Daniel et al (2006)</td>
<td>2000-2004</td>
<td>Israel</td>
<td>Civilian</td>
<td>115</td>
<td>Paediatric (8%)</td>
<td>Suicide IEDs (100%)</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>Amir et al (2005)</td>
<td>2000-2002</td>
<td>Israel</td>
<td>Civilian</td>
<td>148</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (69%)</td>
<td>National Trauma Registry</td>
</tr>
<tr>
<td>Bilukha et al (2015)</td>
<td>2010-2013</td>
<td>Iraq</td>
<td>Civilian</td>
<td>2803</td>
<td>Paediatric (13%)</td>
<td>IEDs (49%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Bitterman et al (2016)</td>
<td>2013</td>
<td>Israel</td>
<td>Military</td>
<td>84</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Borgman et al (2012)</td>
<td>2001-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>128582</td>
<td>Paediatric (6%)</td>
<td>Non-Combat (40%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Borgman et al (2015)</td>
<td>2003-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>549</td>
<td>Paediatric (100%)</td>
<td>Non-Combat (84%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Creamer et al (2009)</td>
<td>2004-2007</td>
<td>Afghanistan</td>
<td>Military</td>
<td>2090</td>
<td>Paediatric (100%)</td>
<td>GSW (29%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Dua et al (2013)</td>
<td>2006-2008</td>
<td>Iraq</td>
<td>Military</td>
<td>25</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (72%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Edwards et al (2012)</td>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>4913</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (100%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Edwards et al (2014)</td>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>6273</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (23%)</td>
<td>Military Trauma Registry</td>
</tr>
<tr>
<td>Study</td>
<td>Monitoring period</td>
<td>Location</td>
<td>Setting</td>
<td>Sample Size</td>
<td>Population</td>
<td>Exposures</td>
<td>Study</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Edwards et al (2014)</td>
<td>2002-2010</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>4928</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (100%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Hillman et al (2016)</td>
<td>2003-2014</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>27</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (59%), GSW (26%), Non-combat (15%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Jaffe et al (2016)</td>
<td>2000-2005</td>
<td>Israel</td>
<td>Civilian</td>
<td>837</td>
<td>Paediatric (14%), Adult (86%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Khan et al (2015)</td>
<td>2010-2011</td>
<td>Pakistan</td>
<td>Civilian</td>
<td>103</td>
<td>Paediatric (16%), Adult (84%)</td>
<td>IEDs (100%)</td>
<td>Retrospective National Trauma Registry</td>
</tr>
<tr>
<td>Kluger et al (2004)</td>
<td>2000-2003</td>
<td>Israel</td>
<td>Civilian</td>
<td>906</td>
<td>Paediatric (7%), Adult (93%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>McKeechle et al (2014)</td>
<td>2008-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>766</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (51%), GSW (28%), Non-combat (21%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Naylor et al (2018)</td>
<td>2007-2016</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>3439</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (38%), GSW (20%), Non-combat (11%), Other/Not specified (31%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Neff et al (2014)</td>
<td>2001-2013</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>1113</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (56%), GSW (32%), Non-combat (12%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Patregnani et al (2012)</td>
<td>2002-2009</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>744</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%), GSW (26%), Non-combat (31%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Quintana et al (1997)</td>
<td>1996</td>
<td>USA</td>
<td>Civilian</td>
<td>66</td>
<td>Paediatric (100%)</td>
<td>IED (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Schauer et al (2018)</td>
<td>2007-2016</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>3388</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%), GSW (22%), Non-combat (35%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Smith et al (2014)</td>
<td>2003-2011</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>813</td>
<td>Paediatric (6%), Adult (94%)</td>
<td>IEDs/Shelling (77%), GSW (23%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Villanueva et al (2014)</td>
<td>2002-2011</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>155</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (58%), GSW (37%), Other/Not specified (5%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Waisman et al (2003)</td>
<td>2000-2002</td>
<td>Israel</td>
<td>Civilian</td>
<td>160</td>
<td>Paediatric (100%)</td>
<td>IEDs (67%), GSW (25%), Other/Not specified (11%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Woods et al (2012)</td>
<td>2003-2009</td>
<td>Afghanistan, Iraq</td>
<td>Military</td>
<td>176</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (59%), GSW (21%), Non-combat (20%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
</tbody>
</table>

Table 2. The 26 studies utilising single centre hospital based case series
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Setting</th>
<th>Cases</th>
<th>Paediatric</th>
<th>Adult</th>
<th>Landmines</th>
<th>IEDs/Shelling</th>
<th>GSW</th>
<th>Other/Unknown</th>
<th>Mortality</th>
<th>Long term sequelae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Workat et al (2001)(35)</td>
<td>1988-2000</td>
<td>Jordan</td>
<td>Civilian</td>
<td>226</td>
<td>Paediatric (10%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (52%)</td>
<td>GSW (11%)</td>
<td>Non-combat (37%)</td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Anul et al (2012)(36)</td>
<td>2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>82</td>
<td>Paediatric (100%)</td>
<td>Adult (88%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (33%)</td>
<td>GSW (29%)</td>
<td>Non-combat (17%)</td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Bajec et al (1993)(37)</td>
<td>1991</td>
<td>Kuwait</td>
<td>Civilian</td>
<td>152</td>
<td>Paediatric (12%)</td>
<td>Adult (88%)</td>
<td>Landmines (100%)</td>
<td></td>
<td>Non-combat (37%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Boettler et al (2006)(38)</td>
<td>2002</td>
<td>Afghanistan</td>
<td>Military</td>
<td>204</td>
<td>Paediatric (28%)</td>
<td>Adult (72%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (36%)</td>
<td>GSW (20%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Bertani et al (2015)(39)</td>
<td>2009-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>89</td>
<td>Paediatric (100%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (79%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Coppola et al (2006)(40)</td>
<td>2004-2005</td>
<td>Iraq</td>
<td>Military</td>
<td>85</td>
<td>Paediatric (100%)</td>
<td>Adult (84%)</td>
<td>Landmines (57%)</td>
<td>IEDs/Shelling (29%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Can et al (2009)(41)</td>
<td>2001-2008</td>
<td>Turkey</td>
<td>Civilian</td>
<td>23</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (87%)</td>
<td>Non-combat (44%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
<td></td>
</tr>
<tr>
<td>Chehab et al (2018)(42)</td>
<td>2009-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>81</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (67%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>El et al (2017)(43)</td>
<td>2013-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>1591</td>
<td>Paediatric (18%)</td>
<td>Adult (82%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (77%)</td>
<td>GSW (7%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Fares et al (2013)(44)</td>
<td>2006-2011</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>122</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (67%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Fares et al (2014)(45)</td>
<td>2006-2013</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>20</td>
<td>Paediatric (28%)</td>
<td>Adult (72%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (67%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Gorney et al (2004)(46)</td>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (7%)</td>
<td>GSW (1%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Harris et al (2005)(5)</td>
<td>2006</td>
<td>Afghanistan</td>
<td>Military</td>
<td>15</td>
<td>Paediatric (100%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (63%)</td>
<td>GSW (37%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Hinsley et al (2005)(47)</td>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>79</td>
<td>Paediatric (10%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (63%)</td>
<td>GSW (37%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Hodalic et al (1999)(48)</td>
<td>1991-1992</td>
<td>Croatia</td>
<td>Military</td>
<td>1211</td>
<td>Paediatric (13%)</td>
<td>Adult (87%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (66%)</td>
<td>GSW (3%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Inwald et al (2014)(49)</td>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>112</td>
<td>Paediatric (100%)</td>
<td>Adult (90%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (64%)</td>
<td>GSW (29%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Jeevaratnam et al (2019)(50)</td>
<td>2010</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>88</td>
<td>Paediatric (35%)</td>
<td>Adult (65%)</td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (33%)</td>
<td>GSW (67%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Klimo et al (2016)(51)</td>
<td>2007-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>43</td>
<td>Paediatric (100%)</td>
<td></td>
<td>Landmines (100%)</td>
<td>IEDs/Shelling (67%)</td>
<td>GSW (21%)</td>
<td></td>
<td></td>
<td>Retrospective. Single centre Hospital based case series</td>
</tr>
<tr>
<td>Authors</td>
<td>Time Period</td>
<td>Location</td>
<td>Setting</td>
<td>Sample Size</td>
<td>Population</td>
<td>Exposures</td>
<td>Study Type</td>
<td>Effect investigated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------------------------</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arafat et al (2017)</td>
<td>2012-2013</td>
<td>Syria</td>
<td>Civilian</td>
<td>324</td>
<td>Paediatric: 18% Adult: 82%</td>
<td>IEDs/Shelling: 57% GSW: 43%</td>
<td>Retrospective. Multi-centre Hospital based case series</td>
<td>Injuries and mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. The 8 studies utilising multi-centre hospital based case series
Table 4. The 13 studies utilising community surveillance

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-1995</td>
<td>Bosnia</td>
<td>Civilian</td>
<td>2100</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Retrospective, community surveillance</td>
<td>Socio-economic</td>
</tr>
<tr>
<td></td>
<td>Cambodia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-2002</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>1636</td>
<td>Paediatric (48%) Adult (54%)</td>
<td>UXO (47%) Landmine (41%) Other/Unknown (12%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>1994-2005</td>
<td>Chechnya</td>
<td>Civilian</td>
<td>3021</td>
<td>Paediatric (30%) Adult (70%)</td>
<td>Landmines (41%) UXO (37%) Other/Unknown (22%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2002-2006</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>5471</td>
<td>Paediatric (54%) Adult (46%)</td>
<td>UXO (50%) Landmines (42%) Other/Unknown (8%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2006-2010</td>
<td>Nepal</td>
<td>Civilian</td>
<td>307</td>
<td>Paediatric (58%) Adult (42%)</td>
<td>IEDs (76%) Landmines (4%) Other/Unknown (20%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2008-2011</td>
<td>Nepal</td>
<td>Civilian</td>
<td>437</td>
<td>Paediatric (14%) Adult (76%)</td>
<td>IEDs (69%) Other/Unknown (31%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2013</td>
<td>USA</td>
<td>Civilian</td>
<td>11</td>
<td>Paediatric (100%)</td>
<td>IEDs (100%)</td>
<td>Prospective, Community Surveillance</td>
<td>Long term sequelae</td>
</tr>
<tr>
<td>2011-2016</td>
<td>Syria</td>
<td>Civilian</td>
<td>101453</td>
<td>Paediatric (17%) Adult (83%)</td>
<td>Shelling/Air bombardment (57%) Other/Not specified (43%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Mortality</td>
</tr>
<tr>
<td>1988-2013</td>
<td>Iran</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Cross-section, Community surveillance</td>
<td>Long term sequelae</td>
</tr>
<tr>
<td>1991-2000</td>
<td>Bosnia</td>
<td>Civilian</td>
<td>4064</td>
<td>Paediatric (14%) Adult (86%)</td>
<td>Landmines (100%)</td>
<td>Retrospective, Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2014</td>
<td>Iran</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Landmines (80%) UXO (20%)</td>
<td>Retrospective, Mixed-method community surveillance</td>
<td>Long-term sequelae/ Injuries and mortality</td>
</tr>
<tr>
<td>2006</td>
<td>Israel</td>
<td>Civilian</td>
<td>695</td>
<td>Paediatric (100%)</td>
<td>IEDs (100%)</td>
<td>Retrospective, Mixed-method community surveillance</td>
<td>Long term sequelae</td>
</tr>
<tr>
<td>2015</td>
<td>Iran</td>
<td>Civilian</td>
<td>41</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Retrospective mixed-method community surveillance</td>
<td>Long term sequelae</td>
</tr>
</tbody>
</table>

Table 5. The 1 study utilising grey literature

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>78769</td>
<td>Paediatric (18%) Adult (84%)</td>
<td>IEDs/Shelling (75%) GSW (25%)</td>
<td>Grey-literature</td>
<td>Mortality</td>
</tr>
</tbody>
</table>
Demographics

Following the use of explosive weaponry by non-state actors against civilians, the most commonly injured paediatric cohort are males aged 10-18 years old (9,11,33), while children involved in conflict and ERW blast injuries were generally aged between 4-10 years old (18,59). Perpetrators target busy areas such as restaurants and nightclubs which older children and adolescents might frequent (10,11,33), while cultural factors within LMICs in these social areas result in a predominantly male cohort (9,10,12,22–24,33,67,75,80). Similar gender finding are observed in children following conflict and ERW related injuries where all studies showed male predominance in victims, with over 70% male in three quarters of the studies (Figure 2).

Figure 2. Gender differences in in casualties following blast

ERW contribute considerable morbidity and mortality both during and following conflict. As seen in figure 3, children were more likely to be injured by UXO compared with adults, while landmines affected a predominately adult cohort (35,37,41,62,69,70,72,73,78). It should be noted that statistics on pre-hospital mortality for children in conflict settings is generally an underestimation due to the difficulties in reporting and monitoring. Many explosive weapons observation groups do not or are unable to distinguish between adults and children in their reporting.

Figure 3. Percentage of Casualties (injuries and fatalities) by specific modalities

UXOs have been described as small, colourful and toy-like, promoting child interaction and subsequent injury from handling, resulting in often fatal upper limb, head, neck or chest injury (41,44,62,83,84). Due to the social nature of children, these interactions commonly occur in groups, leading to multiple casualties in 45-63% of events involving children compared to 30-40% in adults (70,78,79).

Occupation and education play a role in ERW injuries. It is common for children in LMICs, particularly males, to assist their family with herding and farming as opposed to attending school. This may affect the likelihood to exposure to ERWs through increased freedom to roam where such devices are present (25,42,64,72). A lack of formal education impacts the child’s ability to read warning signs; only 6-22% of victims were aware ERWs were present (27,80) and of these, only 0-11% had received ERW risk education (23,25,27,80).
Children are particularly vulnerable to wide-area explosives such as aerial bombardment and shelling, particularly in the primarily urbanised environments of modern conflicts. In the Syrian Civil War, three quarters of wide-area explosives were used in civilian residential areas that children frequent, with these mechanisms responsible for 82% of child deaths (76,82).

The following section reviews what is known of mortality in children before reviewing injury types.

Mortality

Comparison of paediatric wartime mortality data is difficult as many studies do not differentiate mechanism of injury. Edwards et al (85) study on 4,913 children between 2002-2010 presenting with blast injuries remains the single largest data set. The reported mortality rate of 8% matches well with the mortality rates of 6-9% quoted in paediatric trauma deaths from Iraq and Afghanistan, although these studies displayed all trauma mechanisms as opposed to specifying blast trauma (14,16,20,25,36,40). Between 2006-2013, Thompson et al. (58) noted a mortality rate over double of that quoted by Edwards et al. following paediatric blast injury in Afghanistan (18%). Operational tempo and the increasing use of IEDs have been hypothesized to underlie these discrepancies in mortality (58).

Age related variation in mortality has been described. Matos et al noted mortality was highest at 24% in young children (5-8 year old) (52) while Schauer et al and Spinella et al found greatest mortality in 0-4 years (30,68). Similarly, Borgman et al and Matos et al noted that children <8 years old had increased trauma mortality compared to 8-16 year olds (10-18% vs 4-7%) (15,52), while Spinella et al noted a similar increase in mortality in young children (<6 year old) compared to 6-16 year olds (11% vs 4%) (68). Few studies directly compare adult and paediatric mortality, and comparisons between studies are difficult due to methodological differences. What is common is that mortality in children following combat related trauma is considerably higher than that of paediatric non-combat trauma (2-3%) (86) and adult military combat casualties (1-3%) (87,88).

A wide range of paediatric mortality is reported following mine strikes, ranging from 4-46% (41,44,62,69–74,83). Shuker et al (89) suggested that approximately half of paediatric victims die within minutes of mine explosion, likely due to penetrating head injury, and catastrophic haemorrhage causing non-survivable injuries, in keeping with adult literature (87,88). Time critical injuries following blasts may represent particular problems in LMIC’s, where pre-hospital evacuation chains may be protracted. Coupland (90) noted that in 1991, only 14% of paediatric and adult ERW victims were admitted in under six hours, while
the majority (58%) were admitted between 6-24 hours and 28% presented after 24 hours. Even in recent conflicts, Bitterman et al(13) found <10% of children presented within 1 hour, with over a third presenting after 6 hours. Protracted evacuation of paediatric victims add to blast mortality, reinforced by studies observing a 85-91% mortality of children either at scene or en-route to health facilities(73,89).

Vascular injuries

Penetrating injuries occur in 38-76% of blast-exposed children (9,10,14,16,33,36,37,55), with incidence greater in older children aged 10-16 compared to 0-10 year olds (65-83% vs 47-63%)(22,52). In keeping with penetrating injury patterns, vascular injury was observed in 3-12% of children following blast trauma (9,32,33,37), considerably higher compared to non-blast conflict trauma where vascular injury occurred in 0.6-1% of paediatric victims(9,10,24,32,53).

Vascular damage and subsequent haemorrhage following explosions have been identified as a significant cause of childhood fatalities, ranging from the primary cause of death in 21-38% during the Syrian Civil War(63,64) to 63% following IED and suicide attacks in Pakistan(67), while mortality rates following penetrating injuries in civilian settings are considerably lower (5%)(32). Extremity trauma was most highly associated with vascular injuries, with the majority of vascular injuries occurring in the lower limb (38-58%) followed by the upper limbs (25-28%)(17,32). This is in keeping with adult data where 54% of injuries were sustained to the extremities(87). Despite its high prevalence, extremity vascular wounds confer reduced risk of death compared to vascular damage within the torso, attributed as the primary cause of death in 71% of paediatric deaths and conferring a four-fold increased risk of death compared to extremity vascular injuries(32).

Data on vascular damage is clear: older children and adolescents sustain similar rates of vascular injury to adults, particularly to the extremities, while mortality following penetrating trauma is primarily the result of injuries to the vasculature within the torso.

Head injuries

The prevalence of head injuries following blasts are diverse, ranging from 6-54% (10,11,40,42,43,47–49,53,13,16,18,32,33,36,38,39), while adult combat data ranges from 16-29%(87). This variation is due to the heterogenous definitions of head injury described in these studies, with few studies differentiating between superficial scalp wounds, blunt traumatic brain injury (TBI) or penetrating TBI. Where head injuries were documented, TBI was recorded
in 21-62% of paediatric victims, of which 38-39% were defined as penetrating(33,45,48). Unsurprisingly, papers noted over double the incidence of paediatric penetrating head injury in blast trauma compared to mainly blunt civilian trauma (13% vs 6%), while the reverse was true in closed head injuries, with half the incidence of closed head injuries in blast injuries compared to civilian trauma (22% vs 44%)(9).

Cerebral haemorrhage and direct cranial damage following blast have been attributed as a leading cause of death in children, responsible for 46-71% of fatalities (36–38,43,101). Creamer(38) noted penetrating wounds to the head accounted for 44% of child deaths in the emergency department while open skull fractures with cerebral evisceration was documented in 88% of paediatric fatalities following the 1995 Oklahoma City bombings(102). While penetrating head injuries undoubtedly carry high mortality, Woods(34) noted that 8 children survived to hospital discharge despite penetrating head injuries deemed initially unsurvivable, suggesting such are not unequivocally fatal.

Er et al(43) noted that children were more likely to be injured in the head compared to adults (54% vs 40%) following aerial and shelling during the Syrian Civil War, while young children aged between 0-4 year old were more likely to undergo neurosurgical procedures compared to other ages(20,51), 48% of which were craniectomies or craniotomies for penetrating brain injury, mainly secondary to IED blasts(51). Suggested reasons for this increase may relate to anatomical predispositions, particularly in infants, such as large head to body ratios in addition to reduced skull rigidity(22) as well as the relatively shorter distance from the head to ground-based ERW and IEDs compared to adults(18,22,62,84,89).

There is a clear lack of studies investigating long term outcomes following blast- associated head injuries. While significant cognitive, intellectual and functional sequelae arising from non-blast TBI (nbTBI) have been described, controversy exists as to whether nbTBI is analogous to blast-induced TBI(91), and the paucity of paediatric data means this comparison is even more problematic.

A unifying message is that head injuries are associated with high morbidity and mortality in paediatric blast trauma, while the long term consequences remain largely unknown. Head injuries are commonly penetrating compared to civilian practice, and increased operative demand in infants and toddlers for neurosurgical procedures may stretch medical service expertise.

Facial and ocular injuries
Blasts result in injury to the face in between 27-48% of paediatric victims, compared to 12% resulting from GSW(11,18,49) and 10% in adults(87). Relative to other blast related injuries, facial injuries in isolation are associated with reduced mortality(18). However, Gataa (65) noted that of the patients presenting with facial injuries, 29% had concomitant eye injury, 22% had TBI, while life-threatening facial bleeding occurred in 10% of patients. In addition to physical sequelae, facial injuries are associated with functional and psychological disorders stemming from stigmatisation of disfiguring injuries with implications for future social, economic and marital prospects(65).

Despite only comprising of 0.3% of the anterior body surface, the eye is sensitive to blast injury, with ocular injuries in 4-28% of children following trauma related to combat or ERW (13,16,36,38,39,42,45,53,79). In keeping with patterns of facial injury, an increased prevalence of eye injury is associated with blast injuries compared to GSW (13% vs 3%)(11). Landmines are often associated with multiple foreign bodies on the conjunctiva, cornea and sclera, in addition to sight-threatening injuries such as enucleation or eye globe perforation(41). Monocular enucleation was observed in 4%, while bilateral enucleation, and hence blindness, was more common (14%)(41,79). When compared to adult victims of landmines and cluster bombs, children have more eye injuries (14% vs 8%)(78) as well as twice the prevalence of eye globe perforation (28% vs 14%)(43) and complete loss of vision (21 vs 10%)(62). Without adequate support, both monocular and bilateral vision loss may translate to developmental and educational deficiencies in the growing child.

Facial and eye injuries are frequent following exposure to blasts, and should raise suspicion of intracranial injury. Important are the social and education implications of these disfiguring injuries in the growing child.

Torso Injuries

Following blast injury, trauma to the torso is common, varying from 12-46% between studies (11,13,41,43,47–49,67,16–18,32,36,38–40) and peaking in 5-10 year olds(22,33). Er et al.’s (43) study on civilian paediatric injuries during the Syrian Civil War noted that the abdomen was less commonly injured compared to adults (12 vs 20%), while chest injury with accompanying lung contusion was present in 51% of children with torso injuries, compared to 35% in adults. Both chest and abdominal injuries from blast are typically classed as ‘severe’(18). Abdominal injuries accounted for 18-19% of injury specific deaths following blast in the paediatric population, while chest injuries have been attributed to 8% of deaths in the ED(16). Explanations for this susceptibility to severe and life threatening torso injuries include a lack of body armour compared to adult combat victims and the observation that children
have flexible rib cages allowing greater damage to underlying structures without rib fracture, contributing to the increase in lung contusion observed(32).

When organ specific injuries were examined, blast was most likely to cause open penetrating wounds of the bowel and intra-abdominal organs, affecting the small intestine in over a third (34%) and the liver, spleen or pancreas in 36%(16,54,61). Where internal organ damage was sustained, injury specific mortality almost doubled from 15 to 29%(63). These injuries were frequently contaminated due to bowel rupture, requiring multiple procedures and a high rate of antibiotic usage(57). The thinner abdominal walls, reduced intraabdominal fat and larger solid organs relative to the body cavity increases likelihood of visceral damage following penetrating trauma, while delayed signs of visceral damage support the role of repeated examination and radiological input, even in the absence of external damage.

In the context of total operative procedures performed, laparotomies comprised a significant component of total surgical workload, encompassing 12-23% of all paediatric procedures performed(25,58,92). Children were more likely to require laparotomies following combat trauma compared to paediatric non-combat, and primarily blunt, abdominal trauma (13 vs 2%). Children in combat zones were also twice as likely to undergo laparotomies compared to US service personnel (12% vs 6%)(68). In addition to the high prevalence of abdominal injuries, children frequently swallow air when frightened or in pain, resulting in gastric dilation. As well as increasing vomiting risk, this may erroneously suggest abdominal injury(89) and lead to laparotomy. Despite this, Arafat et al(61) noted that only 8% of laparotomies were negative, supporting the role of explorative laparotomies in penetrating trauma following blasts.

Compared to both adults and children in non-conflict settings, the blast injured child is more likely to sustain injuries to the chest. While abdominal injuries are less frequent, they are more likely to involve visceral damage and require operative management compared to adult combat trauma.

Extremity injuries

Extremity injury is one of the defining features following blast related trauma. Extremity injuries within conflict zones are observed in just under half of children (45%), its prevalence increasing in blast injuries (69%)(49), with a retrospective study finding 100% of traumatic amputations and 96% of bone injuries to hand and foot were secondary to blast injuries(39).

Studies describe extreme variation in the prevalence of upper limb injuries following blasts, ranging from 6-74% (13,25,40,41,47,48,58,67,69,29,32,33,35–39), with the greatest upper limb injury reported following UXO and cluster munition strike(41,44). Compared to adult and
particularly following ERW blast, children were more likely to sustain upper limb injuries (62,67,70–73) with a corresponding increase of 150-300% requiring operative amputation, typically at the level of the finger (37,66,71,72). Traumatic amputation of the upper limb was common and limited to the hands in 44-94% of children sustaining upper limb injuries(38,41), while trans-radial and trans-humeral amputation was less frequent (14-34%)(25,48) but were more likely to be bilateral(79). Arm fractures necessitating surgical fixation were observed in 45%(29), while upper limb vasculature was commonly disrupted(17,32,48).

Similarly, prevalence of lower limb injuries shows variation between studies on blast affecting 25-86% of children(13,25,48,67,29,35–38,40,41,47), with landmine strikes particularly associated with lower limb injury(35,37,41); 20-29% required operative amputations, normally at the trans-tibial plane(37,38,79). Lower limb injuries were less common in children compared to adults(62,70,72–74), with incidence lowest in 0-3 year olds(22), while increasing in adolescents to mirror adults(62). Traumatic amputations were less frequent compared to the upper limb, occurring in 14-35% of lower limb injuries(25,41,48).

Landmines drive debris, footwear and clothing upward between planes of the soft tissues and bone, leading to degloving injuries of the leg, perineum and lower abdominal viscera, as well creating serious potential for soft tissue and bone infection in the remaining limb(84,90). While large bony defects of the lower limb are problematic in children(93), reconstruction with limited shortening (<2 cm) has been associated with good outcomes, with the capability for highly active growth plates to remodel and compensate for this (39,94). However, 75% of new growth occurs in the distal femur and tibia growth plates, with the distal limb most prone to explosive disruption(84).

The long term physical, psychosocial and financial repercussions of amputation must not be underestimated. Physical complications are greatest following TA and below knee amputations, and include anterior and varus bowing, heterotopic ossification and osseous overgrowth requiring operative or prosthetic revision(95). Overgrowth is particularly problematic in younger patients (under 12 years), with 15% of patients sustaining amputations requiring re-vision of their stump. Protracted phantom limb sensation (PLS) and phantom limb pain (PLP) is reported in over 50% of children following blast related amputation, similar to that seen in adult literature following blasts(96), yet over five times higher than in children requiring amputation following non-traumatic indications such as malignancy. Increased PLS has been reported in lower limb amputations, while PLP was increased in upper limb amputations (22,100). Social acceptance of the child amputee is culturally specific, with stigmatisation in certain cultures negatively impacting the child’s psychological, social and educational status(97). While there is a paucity of outcome and long term costing studies in
LMICs, the financial burden of prolonged rehabilitation and repeated revision of prosthesis on the children and host country’s health system is likely to be considerable(97).

Like adults involved in blast trauma, older and adolescents children are prone to extremity injury, particularly of the upper limb, while infants and toddlers experience less extremity injuries. Limb injury causes diverse complications in the growing child with increased requirement for re-revision compared to adults.

Burn injuries

Multiple retrospective studies have noted that the majority of burns in children result from civilian mechanisms such as scalding, open fires and flash burns from household cooking fuels (15,16,46,98,99), while approximately 9-12% is the result of high-order explosives observed in combat blast modalities(46,99), less than observed in adult combat populations (52%)(100). Unlike civilian mechanisms however, blast-induced burns rarely occur in isolation, with multidimensional injuries playing a significant role in the child’s prognosis(33,50,99).

While post-mortem findings following the Syrian Civil War attributed only 0.5% of deaths being secondary to burns(63), conflict-related burn victims had higher mortality compared to non-conflict related burn victims (47% vs 3%)(98), and significantly greater than blast related burns in adult military populations (5%)(100). Severe burns following blasts were sustained in 30% of children, and fatal in 36-40%(18,40).

Creamer(38) noted the median age of burn victims as 6 years old. At this young age, the anatomical disproportionality of the child increases the total body surface area (TBSA), resulting in significant burn surface area (BuSA). Thus, approximately half of paediatric burns in conflict zones result in BuSA >15% (32,127), while 13% of children have BuSA exceeding 40%(127). A high BuSA exceeding 40% has been linked to myocardial damage and hypotension, making hemodynamic management challenging, while complications including nosocomial infection of the burn eschar and pneumonia are not uncommon(98). Within LMICs, protein loss and weight based fluid resuscitation is complicated by malnourishment, while cold fluids may accentuate hypothermia(46).

In conflict related burns, the head and neck are most frequently affected, potentially leading to thermal inhalation injuries(50,99). Thermal inhalation injuries in paediatric victims are difficult to assess, and clues to inhalational injuries such as increased respiratory rate may be incorrectly interpreted in the context of physiological age discrepancies. In addition the paediatric subglottis represents the narrowest section of the upper airway, and deteriorates rapidly from burn-induced laryngeal oedema, especially in the context of failed intubation...
attempts (101) leading to rapid oxygen desaturation. Between 21-33% of children were identified as having inhalational injuries requiring pre-emptive or immediate intubation to protect the airways (50, 53), similar to that seen in adult combat casualties (26%) (100). Of this paediatric cohort with inhalational injuries, 39% died (50), significantly greater than in adult populations (4%) (100).

Prognosticating factors noted for burns include increased time to presentation, prolonged hospital length of stay and requirement for critical care input (98). This relates to the resource-intensive management of the paediatric burns patient. Like adults, hospital length of stay for burns patients are 2-3 times that of the general paediatric population (36, 99), while ICU requirements are increased, particularly in burns secondary to blast injuries (98, 99). Operative demands of paediatric burn victims are significant. Children aged 6 months to 3 years were between 4-14 times more likely than adults to require surgical input, reflecting the significant burden of burns (39% of this cohort compared to 2-6% in adults (102)). While other conditions may be treated by a single operation, burns often require serial procedures (102), with an average 2 operations per patient. This creates a disproportionate operative volume in both adults and paediatric patients compared to other surgical emergencies (102). Burns induced by blast injuries require more escharotomies (27% vs 4% P<0.001) and fasciotomies (67% vs 30% P=0.002) when compared to civilian burn mechanisms (98).

Additionally, the requirement for post-operative support and rehabilitation add to the resource requirements. Children are rarely left without functional sequelae, with limited joint mobility and impaired tactile sensation presenting significant future challenges for rehabilitation (103), while high rates of psychological morbidity including suicidal ideation have been reported in adolescents (104). Under-resourcing psychological and functional rehabilitation will likely lead to high rates of morbidity and mortality (102). The degree to which these services are available within conflict zones and LMICs is uncertain. Ethical questions naturally arise when performing interventions where health systems are unlikely to address a child’s long term needs. Examination of existing paediatric burn services within zones of interest and longer term follow up of paediatric blast burn patients are required to determine the problems and needs for this cohort.

Service provision

Relative to total admissions, paediatric victims affected by blasts constitute a disproportionately large resource burden on operative workload, as well as intensive care and hospital beds. Approximately 47-82% of paediatric blast victims require surgery (22, 33, 36, 58, 61), particularly adolescents (22). The requirement for multiple operative
procedures were common in the paediatric cohort, especially in burn and orthopaedic surgery due to the requirement for surgical revision (34-80% of children required ≥2 procedures(16,18,36,38–40,42,54); 25% required ≥4 procedures)(16). Operative requirement was greatest in 9-14 year olds, requiring on average 5 procedures per patient, prolonged ICU and hospital stay, while 0-3 year olds required the least operative management(20). This study suggested the reduced requirement for operative input in 0-3 year olds may be due not only to the reduced burden of extremity injuries requiring repeated debridement, but potentially because the equipment was inappropriate for this young cohort. This is supported by observations that infants and young children aged 0-10 years old with an Injury Severity Score ≥15 were 4x less likely to go to surgery compared to adults, while adolescents (11-15 years) were 2x more likely to receive operative input(22).

Multidisciplinary surgical services were required in 80% of patients, with orthopaedic, plastic, general neurosurgical, ophthalmic and vascular surgeons often working in partnership(48). Debridement and primary skin closure represented the most common procedure, in 35-100% of studies(25,29,36–38,47,58,68), in keeping with shrapnel injuries leading to multiple and frequently contaminated superficial injuries(29,47). Children are likely to do well with thorough debridement, with well perfused tissues allowing optimal healing and scar formation(39,94).

Retrospective studies of US military medical treatment facilities (MTF) in Afghanistan have found that while children comprised only 3-6% of their total admissions, this demographic required approximately double the total bed spaces (7-11%)(14,19,53), and on average 3x the length of stay (LOS) of coalition troops admitted over the same time period(14,68). Approximately 40% of paediatric admissions required a LOS exceeding 7 days, while, in half, the LOS exceeded 14 days(10,33). Spinella et al noted that while children aged 11-17 were the greatest proportion of children occupying beds, <1 year old cohort had the longest stay(68). This contrasts with other studies finding young children <8 years old had the shortest LOS, while children(8-14 years old) had the longest(14,18).

A similar burden is observed in the intensive care unit (ICU), with between 20-45% children requiring ICU admission(5,30,33,36,43,50,53,54,61), the majority following explosive or ballistic trauma. Children were often younger (0-10 years old)(22), with one recent study noting children aged <1 year and 1-4 years most often requiring admission (53 & 66% respectively)(30). Children under 8 required a ICU LOS over twice that of children aged >8 years (52). Harris et al(5) noted that despite representing only 12% of admissions, children occupied on average 35% of ICU beds, with a brief surge in numbers resulting in 100% occupancy from children, the majority requiring ventilatory and ionotropic support. This specialised service was often provided by non-paediatric experts, which could result in 2
healthcare providers per paediatric patient (5). Ventilatory equipment is often age specific, and although multiple examples of ingenuity and adaptation of adult equipment exist (5, 54), children may overwhelm the unprepared MTF.

One of the key challenges is providing sustainable health services in the host country. MTFs may be capable of delivering exceptional paediatric care in the acute phase following blasts, but recovery from morbidity is dependent on long term rehabilitation (94) normally provided by the host country. Not only can this place exceptional strain on local health authorities, but if provisions are not available, the child is likely to undergo a protracted decline (5, 94).

Reasons for the high rate of admission and prolonged stay may be multifactorial. Admission criteria for host nationals to a coalition MTF typically require threat to life, limb, or eyesight, with resulting prolonged stay. Interestingly however, children with mild to moderate traumata are three times more likely than adults to be admitted (22). This may reflect a lack of certainty in initial assessment of injury severity from health practitioners unaccustomed to dealing with children. Within conflict zones, rearwards evacuation of civilians is not always possible, and health interventions such as ventilatory support may not be sustainable by host countries without deterioration in service standards, leading to prolonged admission until the child can be safely moved (5).

Following up recovery is a recurring theme when exploring long term challenges of blast injuries in children (6). Children are a complex cohort to monitor. Geographical displacement, particularly in the context of a conflict, increases the likelihood of this vulnerable cohort being lost to follow-up. This can impact not only the child’s rehabilitation and coordination with local health authorities, but also cause difficulty in assessing long-term functional outcomes which are needed to detect future health needs. Increasingly there is recognition of the need for formalised trauma registries accessible in the host country, assisting the follow-up of this vulnerable demographic (6, 18, 19, 53).

Conclusion

Apart from their focus on paediatric blast, all the papers in this review have one thing in common. Their research is based on those child patients injured by blast in conflict zones, post-conflict zones and low resource environments. Most paediatric blast injury is inflicted in these settings but is not exclusive to them. In Britain in May 2017, a bomb detonated at the Manchester Arena killing 23 people and injuring 139, most of whom were children. The attack placed a sudden and significant burden on medical services in the city, which had no experience of paediatric blast injury in the 21st century, let alone on this kind of scale.
Wherever in the world they live, and whatever the circumstances of the explosion, the social and anatomical profile of children makes them uniquely vulnerable to one of the most complex and demanding trauma conditions that any medical professional or system can treat. This paper has characterised paediatric blast as a diverse injury pattern, which must be seen as distinct from its adult equivalent. This pattern should be fully understood from point of wounding through the post-operative and rehabilitation phases of treatment. This continuum approach would enable both better long-term care of the patient, and improved support of medical systems bearing the intense burden of that care.

It remains to be seen whether the monitoring of the long term effects of paediatric blast injury in well-resourced environments is any better than that in areas of instability. Monitoring of patient outcomes should be integrated with the monitoring of treatment so that relevant practice and skills can be continually assessed. It is urgent that the understanding of paediatric blast injury is given focus and structure, not just for the likely significant patient cohort of the future but for those suffering today as blast injured children surviving into blast-blighted adulthood, wherever they live in the world.

Acknowledgments

The authors are grateful to Dr David Inwald for his detailed comments on this review.

References

78. Kinra S, Black ME. Landmine related injuries in children of Bosnia and Herzegovina

86. Regional K, Regional O, Florida I. Comparison of Outcomes for Pediatric Trauma at Different Types of Trauma Centers: The Unresolved Mystery. 2016;1054–8.

88. Eastridge BJ, Salinas J, Ph D, Wade CE, Ph D, Blackbourne LH. Hypotension is 100 mm Hg on the battlefield. AJS. 2011;202(4):404–8.

96. Article O. The Experience of Phantom Limb Pain in Patients With Combat-Related Traumatic Amputations. 2008;

103. Zeitlin REK, Järnberg J, Somppi EJ, Sundell B. Long-term functional sequelae after

47580 potentially eligible studies identified by database and website searches

4433 duplicates excluded

43147 identified for title screening

42241 excluded after title screening

906 abstracts screened

664 excluded after abstract screening

242 full-text articles assessed for eligibility

168 excluded
- 64 not specifying paediatric patients
- 52 not specifying explosive exposure type
- 18 not original research
- 16 could not access full text
- 15 incorrect topic
- 3 not in English

74 included in review
Blast Injuries in Children: a mixed-methods narrative review.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Paediatrics Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjpo-2019-000452.R3</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Jul-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Milwood Hargrave, John; Bioengineering Pearce, Phillip; Dept of Bioengineering Mayhew, Emily; Imperial College London, Bioengineering Bull, Anthony; Dept of Bioengineering Taylor, Sebastian; Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Paediatric Practice, Paediatric Surgery, Accident & Emergency, General Paediatrics</td>
</tr>
</tbody>
</table>

https://mc.manuscriptcentral.com/bmjpo
Title:

Blast injuries in children: a mixed-methods narrative review

Authors:

Corresponding author:

Emily Mayhew

Dept. of Bioengineering, Imperial College London

Queensgate

London SW7 2AZ

Tel: 074949 63074

Email: e.mayhew@imperial.ac.uk

Authors:

John F.S. Millwood Hargrave,

South Thames Foundation School

Royal Army Medical Corps

208 Field Hospital, London, UK

A.Phillip Pearce,

Centre for Blast Injury Studies

Imperial College London

Queensgate

London SW7 2AZ

Emily R. Mayhew,

Dept of Bioengineering

Imperial College London

https://mc.manuscriptcentral.com/bmjpo
Anthony M.J. Bull,
Dept of Bioengineering
Imperial College London
Queensgate
London SW7 2AZ

Sebastian Taylor
Royal College of Paediatrics and Child Health
5-11 St Theobald’s Road
London WC1X 8SH

Keywords: Paediatric, blast, trauma, conflict, outcomes

Wordcount: 5,336.

Patient and public involvement statement:
No patients or members of the public were involved in this review.
Key questions

What is already known on this topic?

- Approximately one in six children live in conflict zones, where exposure to blast injuries is not uncommon. Blast injuries have the potential to inflict significant mortality and morbidity upon the global paediatric population living in conflict zones.
- Describing the characteristics of injuries sustained by the paediatric population is essential in advancing local and global health policies. Despite this, common themes related to paediatric injury following to blasts are poorly described.

What this study adds?

- Paediatric victims are most likely to be male, with victims following conflict and explosive remnants of war (ERW) typically 4-10 years old. Of these victims, agricultural occupation and poor educational status is related to level of exposure.
- Head injuries are the leading cause of death in 46-71% of paediatric victims, and strongly associated with facial and ocular injuries conferring significant social and economic implications to the victims.
- Injuries to the extremities are seen in approximately half of children exposed to blast trauma, with upper limb injuries requiring between 1.5 to 3 times more operative intervention compared to adults. Functional repercussions of these injuries are significant, with 15% of traumatic amputations in the lower limb frequently requiring operative and prosthetic re-revision.
- An influx of paediatric patients can rapidly overwhelm health facilities, with between 47-82% of children requiring surgical intervention, of which 25% required over 4 procedures. Greater requirement for intensive care support in addition to prolonged inpatient and rehabilitative stays contributes to considerable service strain.

Abstract

Background and significance. Blast injuries arising from high explosive weaponry is common in conflict areas. While blast injury characteristics are well recognised in the adults, there is a lack of consensus as to whether these characteristics translate to the paediatric population. Understanding blast injury patterns in this cohort is essential for providing appropriate provision of services and care for this vulnerable cohort.

Methods. In this mixed-method review, original papers were screened for data pertaining to paediatric injuries following blasts. Information on demographics, morbidity and mortality and service requirements were evaluated. The papers were written and published in English
from a range of international specialists in the field. Patient and public involvement statement: No patients or members of the public were involved in this review.

Results. Children affected by blast injuries are predominantly male and their injuries arise from explosive remnants of war, particularly unexploded ordinance. Blasts show increased morbidity and mortality in younger children, while older children have injury patterns similar to adults. Head and burn injuries represent a significant cause of mortality in young children, while lower limb morbidity is reduced compared to adults. Children have a disproportionate requirement for both operative and non-operative service resources, and provisions for this burden are essential.

Conclusions. Certain characteristics of paediatric injuries arising from blasts are distinct from that of the adult cohort, while the intensive demands on services highlights the importance of understanding the diverse injury patterns in order to optimise future service provisions in caring for this the child blast survivor.
Introduction

Approximately one in six children live in conflict zones, with the main global burden borne by citizens of low and middle income countries (LMICs)(1). Children enmeshed in conflict and post-conflict zones are frequently exposed to high-order explosives (HE), either through explosive remnants of war (ERW) such as landmines and unexploded ordinance (UXOs), military ordinance such as shelling and aerial bombardments or acts perpetrated by non-state actors such as improvised explosive devices (IEDs) and suicide bombing(2). HE can inflict unique and unusual injuries upon the child through the blast over-pressure wave (primary blast injury), energisation of materials causing fragmentation (secondary blast injury), bodily displacement or crush injuries (tertiary blast injuries) and through burns, inhalation, toxic or psychological trauma (quaternary blast injuries)(3).

The UN Convention on the Rights of the Child (UNCRC) seeks to secure both the safety and well-being of all the world’s children. The long-term consequences of conflict injury constitutes grave violations of numerous articles, including Article 3 which calls for signatories to recognise the best interest of the child “in all decisions and actions that affect children.” Similarly, Article 6 recognises every child’s right to life and development, and Article 28 seeks to ensure their right to education. Article 23 specifies that children with a disability “have the right to live full and decent lives,” and Article 39 states that children...who are victims of war must receive special support to help them recover…”. Blast injury and its immediate effects are covered by Article 3.3 which states that medical care of the child be delivered and supervised by providers competent in that field(4). However, paediatric care in conflict zones is often delivered by personnel for whom experience of dealing with paediatric blast injuries is unusual(5). Primary studies increasingly recognise the complex patterns of injury sustained in the adult population following blast exposure(3), however there is a lack of consensus as to whether applying lessons learnt from the adult population translates appropriately into paediatric cohorts(6). Bree et al(7) argue that principles for life-saving interventions, such as prioritising catastrophic haemorrhage, airway, breathing and circulation are just as applicable in children as adults. Conversely Fendya et al(8) contend that directly applying adult trauma principles to the paediatric population neglects the social, anatomical, physiological and psychological differences between adults and children, affecting the validity of these inferences.

While primary studies have described injuries sustained by the blast injured child, no study has attempted to synthesise the data to identify recurrent characterises in this vulnerable cohort. Understanding the characteristics of such injuries to the paediatric population will advance efforts to prevent, mitigate, and treat these injuries in domestic and deployed health
The aim of this review is to provide an overview of injury patterns and challenges in caring for the blast-injured child, in order to define future research needs for protection, mitigation, immediate medical treatment, and rehabilitation.

Methods

In this mixed-methods review, original peer-reviewed quantitative, qualitative and mixed-method observational studies, in addition to grey literature, were screened for data on explosive injuries in paediatric cohorts. By utilising all study designs, greater capture of relevant literature was achieved, although this meant the data was unsuitable for a formal systematic review. PubMed and Scopus (including Embase) were searched. Search terms including “Paediatric” OR “Pediatric” OR “Child*” OR “Children” AND “Blast” OR “Explosi*” OR “Explosion” were used to capture potential studies. Articles had to be written in English and published before December 16, 2018. Studies involving adult as well as children were included, in addition to articles where the mechanism of injury was mixed. This decision was taken in order to accurately reflect the settings the studies represent, where victims in conflict zones are heterogenous and subject to a variety of combat related mechanisms. Studies were omitted if they did not specify explosive mechanisms or include children.

Children are defined as all humans under the age of eighteen years (as specified by the United Nations Convention on the Rights of the Child)(4). The heterogeneity and arbitrary nature of what defines a child is acknowledged, and studies often utilise individual definitions. Within this review ages are defined thus: <1 year are infants, 1-8 are young children; 9-13 are older children and 14-18 are adolescents.

Patient and public involvement statement:

No patients or members of the public were involved in this review.
Results

Figure 1: Study selection

Study selection of the 74 studies included in this review are shown in figure 1. Of these, 26 utilise trauma registries (table 1), 26 single centre hospital based case series (table 2), 8 use multi-centre hospital based case series (table 3), 13 use community surveillance (table 4) while 1 uses grey literature (table 5).

Table 1. The 26 studies utilising trauma registries

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>Israel</td>
<td>Civilian</td>
<td>138</td>
<td>Paediatric</td>
<td>IEDs/Suicide (67%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2000-2004</td>
<td>Israel</td>
<td>Civilian</td>
<td>115</td>
<td>Paediatric</td>
<td>Suicide (100%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2000-2002</td>
<td>Israel</td>
<td>Civilian</td>
<td>148</td>
<td>Paediatric</td>
<td>IEDs/Shelling (66%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2001-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>128582</td>
<td>Paediatric</td>
<td>Non-Combat (40%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2003-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>549</td>
<td>Paediatric</td>
<td>Non-Combat (44%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2004-2007</td>
<td>Afghanistan</td>
<td>Military</td>
<td>2090</td>
<td>Paediatric</td>
<td>GSW (29%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2006-2008</td>
<td>Iraq</td>
<td>Military</td>
<td>25</td>
<td>Paediatric</td>
<td>IEDs/Shelling (72%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>4913</td>
<td>Paediatric</td>
<td>IEDs/Shelling (100%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2002-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>6273</td>
<td>Paediatric</td>
<td>IEDs/Shelling (23%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2002-2010</td>
<td>Afghanistan</td>
<td>Military</td>
<td>4928</td>
<td>Paediatric</td>
<td>IEDs/Shelling (100%)</td>
<td>Retrospective.</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Study</td>
<td>Monitoring period</td>
<td>Location</td>
<td>Setting</td>
<td>Sample Size</td>
<td>Population</td>
<td>Exposure</td>
<td>Study</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Al-Worikat et al (2001)</td>
<td>1988-2000</td>
<td>Jordan</td>
<td>Civilian</td>
<td>226</td>
<td>Paediatric (10%) Adult (90%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Single centre hospital based case series</td>
</tr>
<tr>
<td>Hillman et al (2016)</td>
<td>2003-2014</td>
<td>Afghanistan</td>
<td>Military</td>
<td>27</td>
<td>Paediatric (100%)</td>
<td>IEDs /Shelling (59%) GSW (26%) Non-combat (15%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Jaffe et al (2010)</td>
<td>2000-2005</td>
<td>Israel</td>
<td>Civilian</td>
<td>837</td>
<td>Paediatric (14%) Adult (86%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Khan et al (2015)</td>
<td>2010-2011</td>
<td>Pakistan</td>
<td>Civilian</td>
<td>103</td>
<td>Paediatric (16%) Adult (84%)</td>
<td>IEDs (100%)</td>
<td>Retrospective National Trauma Registry</td>
</tr>
<tr>
<td>Kluger et al (2004)</td>
<td>2000-2003</td>
<td>Israel</td>
<td>Civilian</td>
<td>906</td>
<td>Paediatric (7%) Adult (93%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>McClellan et al (2014)</td>
<td>2008-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>766</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (51%) GSW (28%) Non-combat (21%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Naylor et al (2018)</td>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Military</td>
<td>3439</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (38%) GSW (20%) Non-combat (11%) Other/Not specified (31%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Not et al (2014)</td>
<td>2001-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>1113</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (58%) GSW (32%) Non-combat (12%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Patregnani et al (2012)</td>
<td>2002-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>744</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%) GSW (26%) Non-combat (31%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Quintana et al (1997)</td>
<td>1996</td>
<td>USA</td>
<td>Civilian</td>
<td>66</td>
<td>Paediatric (100%)</td>
<td>IED (100%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Schauer et al (2018)</td>
<td>2007-2016</td>
<td>Afghanistan</td>
<td>Military</td>
<td>3388</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (43%) GSW (22%) Non-combat (35%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Smith et al (2014)</td>
<td>2003-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>813</td>
<td>Paediatric (6%) Adult (94%)</td>
<td>IEDs/Shelling (77%) GSW (23%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Villanueva et al (2014)</td>
<td>2002-2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>155</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (58%) GSW (37%) Other/Not specified (5%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
<tr>
<td>Waisman et al (2003)</td>
<td>2000-2002</td>
<td>Israel</td>
<td>Civilian</td>
<td>160</td>
<td>Paediatric (100%)</td>
<td>IEDs (67%) GSW (25%) Other/Not specified (11%)</td>
<td>Retrospective. National Trauma Registry</td>
</tr>
<tr>
<td>Woods et al (2012)</td>
<td>2003-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>176</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (59%) GSW (21%) Non-combat (20%)</td>
<td>Retrospective. Military Trauma Registry</td>
</tr>
</tbody>
</table>

Table 2. The 26 studies utilising single centre hospital based case series
<table>
<thead>
<tr>
<th>Author(s) et al</th>
<th>Year</th>
<th>Location</th>
<th>Setting</th>
<th>Cases</th>
<th>Age Distribution</th>
<th>Injury Type</th>
<th>Study Design</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghani et al (2012)</td>
<td>2011</td>
<td>Afghanistan</td>
<td>Military</td>
<td>82</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (52%), GSW (11%), Non-combat (37%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (1993)</td>
<td>1991</td>
<td>Kuwait</td>
<td>Civilian</td>
<td>152</td>
<td>Paediatric (12%), Adult (88%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2006)</td>
<td>2002</td>
<td>Afghanistan</td>
<td>Military</td>
<td>204</td>
<td>Paediatric (28%), Adult (72%)</td>
<td>Non-combat (44%), IEDs/Shelling (36%), GSW (20%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2015)</td>
<td>2009-2013</td>
<td>Afghanistan</td>
<td>Military</td>
<td>89</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (79%), GSW (21%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2006)</td>
<td>2004-2005</td>
<td>Iraq</td>
<td>Military</td>
<td>85</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (29%), Non-combat (44%), Other/Unknown (27%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2009)</td>
<td>2001-2008</td>
<td>Turkey</td>
<td>Civilian</td>
<td>23</td>
<td>Paediatric (100%)</td>
<td>Landmines (87%), UXO (13%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2008)</td>
<td>2009-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>81</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%), GSW (21%), Stabbing (12%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2017)</td>
<td>2013-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>1591</td>
<td>Paediatric (18%), Adult (82%)</td>
<td>IEDs/Shelling (77%), GSW (7%), Other/Unknown (16%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2013)</td>
<td>2006-2011</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>122</td>
<td>Paediatric (100%)</td>
<td>UXO (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Long term sequelae</td>
</tr>
<tr>
<td>Afghanis et al (2014)</td>
<td>2006-2013</td>
<td>Lebanon</td>
<td>Civilian</td>
<td>29</td>
<td>Paediatric (28%), Adult (72%)</td>
<td>UXO (100%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2004)</td>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (7%), GSW (1%), Other/Not specified (6%), Non-Conflict (83%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2009)</td>
<td>2008</td>
<td>Afghanistan</td>
<td>Military</td>
<td>15</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (87%), Other/Not specified (6%), Non-Conflict (7%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2005)</td>
<td>2003</td>
<td>Iraq</td>
<td>Military</td>
<td>79</td>
<td>Paediatric (10%), Adult (90%)</td>
<td>IEDs/Shelling (63%), GSW (37%)</td>
<td>Retrospective Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (1999)</td>
<td>1991-1992</td>
<td>Croatia</td>
<td>Military</td>
<td>1211</td>
<td>Paediatric (13%), Adult (87%)</td>
<td>IEDs/Shelling (95%), GSW (3%), Other/Not specified (2%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2014)</td>
<td>2011-2012</td>
<td>Afghanistan</td>
<td>Military</td>
<td>112</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (54%), GSW (29%), Non-conflict (17%)</td>
<td>Retrospective Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2013)</td>
<td>2010</td>
<td>Afghanistan</td>
<td>Military</td>
<td>88</td>
<td>Paediatric (35%), Adult (65%)</td>
<td>IEDs/Shelling (33%), Non-conflict (67%)</td>
<td>Retrospective Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>Afghanis et al (2010)</td>
<td>2007-2009</td>
<td>Afghanistan</td>
<td>Military</td>
<td>43</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (67%), GSW (5%), Non-combat (28%)</td>
<td>Retrospective. Single centre Hospital based case series</td>
<td>Injuries and mortality</td>
</tr>
</tbody>
</table>
Table 3. The 8 studies utilising multi-centre hospital based case series

<table>
<thead>
<tr>
<th>Study</th>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashraf et al (2011)(61)</td>
<td>2012-2013</td>
<td>Syria</td>
<td>Civilian</td>
<td>324</td>
<td>Paediatric (18%)</td>
<td>IEDs/Shelling (57%)</td>
<td>Injuries and mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult (82%)</td>
<td>GSW (43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bendinsali et al (2009)(62)</td>
<td>2003-2006</td>
<td>Cambodia</td>
<td>Civilian</td>
<td>356</td>
<td>Paediatric (28%)</td>
<td>Landmines (67%)</td>
<td>Injuries and mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult (74%)</td>
<td>UXO (33%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celikel et al (2014)(63)</td>
<td>2012</td>
<td>Syria</td>
<td>Civilian</td>
<td>186</td>
<td>Paediatric (22%)</td>
<td>IEDs/Shelling (67%)</td>
<td>Mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult (78%)</td>
<td>GSW (26%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celikel et al (2015)(64)</td>
<td>2012-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>140</td>
<td>Paediatric (100%)</td>
<td>IEDs/Shelling (70%)</td>
<td>Mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GSW (14%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other/Unknown (16%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gataa et al (2011)(65)</td>
<td>2005-2006</td>
<td>Iraq</td>
<td>Civilian</td>
<td>551</td>
<td>Paediatric (20%)</td>
<td>IEDs (82%)</td>
<td>Injuries and mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult (80%)</td>
<td>GSW (18%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adult (37%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. The 13 studies utilising community surveillance

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-1995</td>
<td>Afghanistan, Bosnia, Cambodia, Mozambique</td>
<td>Civilian</td>
<td>2100</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Community surveillance</td>
<td>Socio-economic</td>
</tr>
<tr>
<td>2001-2002</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>1636</td>
<td>Paediatric (48%), Adult (54%)</td>
<td>UXO (47%), Landmine (41%), Other/Unknown (12%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>1994-2005</td>
<td>Chechnya</td>
<td>Civilian</td>
<td>3021</td>
<td>Paediatric (30%), Adult (70%)</td>
<td>Landmines (41%), UXO (37%), Other/Unknown (22%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2002-2006</td>
<td>Afghanistan</td>
<td>Civilian</td>
<td>5471</td>
<td>Paediatric (54%), Adult (46%)</td>
<td>UXO (50%), Landmines (42%), Other/Unknown (8%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2006-2010</td>
<td>Nepal</td>
<td>Civilian</td>
<td>307</td>
<td>Paediatric (58%), Adult (42%)</td>
<td>IEDs (76%), Landmines (4%), Other/Unknown (20%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2008-2011</td>
<td>Nepal</td>
<td>Civilian</td>
<td>437</td>
<td>Paediatric (14%), Adult (76%)</td>
<td>IEDs (69%), Other/Unknown (31%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2013</td>
<td>USA</td>
<td>Civilian</td>
<td>11</td>
<td>Paediatric (100%)</td>
<td>IEDs (100%)</td>
<td>Prospective. Community Surveillance</td>
<td>Long-term sequelae</td>
</tr>
<tr>
<td>2011-2016</td>
<td>Syria</td>
<td>Civilian</td>
<td>101453</td>
<td>Paediatric (17%), Adult (83%)</td>
<td>Shelling/Air bombardment (57%), Other/Not specified (43%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Mortality</td>
</tr>
<tr>
<td>1988-2013</td>
<td>Iran</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Cross-sectional. Community surveillance</td>
<td>Long-term sequelae</td>
</tr>
<tr>
<td>1991-2000</td>
<td>Bosnia and Herzegovina</td>
<td>Civilian</td>
<td>4084</td>
<td>Paediatric (14%), Adult (86%)</td>
<td>Landmines (100%)</td>
<td>Retrospective. Community Surveillance</td>
<td>Injuries and mortality</td>
</tr>
<tr>
<td>2014</td>
<td>Iran</td>
<td>Civilian</td>
<td>78</td>
<td>Paediatric (100%)</td>
<td>Landmines (80%), UXO (20%)</td>
<td>Retrospective. Mixed-method community surveillance</td>
<td>Long-term sequelae/Injuries and mortality</td>
</tr>
<tr>
<td>2006</td>
<td>Israel</td>
<td>Civilian</td>
<td>696</td>
<td>Paediatric (100%)</td>
<td>IEDs (100%)</td>
<td>Retrospective. Mixed-method community surveillance</td>
<td>Long-term sequelae</td>
</tr>
<tr>
<td>2015</td>
<td>Iran</td>
<td>Civilian</td>
<td>41</td>
<td>Paediatric (100%)</td>
<td>Landmines (100%)</td>
<td>Retrospective mixed-method community surveillance</td>
<td>Long-term sequelae</td>
</tr>
</tbody>
</table>

Table 5. The 1 study utilising grey literature

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Location</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Population</th>
<th>Exposure</th>
<th>Study</th>
<th>Effect investigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2014</td>
<td>Syria</td>
<td>Civilian</td>
<td>78769</td>
<td>Paediatric (16%), Adult (84%)</td>
<td>IEDs/Shelling (75%), GSW (25%)</td>
<td>Grey-literature</td>
<td>Mortality</td>
</tr>
</tbody>
</table>

Demographics

https://mc.manuscriptcentral.com/bmjpo
Following the use of explosive weaponry by non-state actors against civilians, the most commonly injured paediatric cohort are males aged 10-18 years old (9, 11, 33), while children involved in conflict and ERW blast injuries were generally aged between 4-10 years old (18, 59). Perpetrators target busy areas such as restaurants and nightclubs which older children and adolescents might frequent (10, 11, 33), while cultural factors within LMICs in these social areas result in a predominantly male cohort (9, 10, 12, 22–24, 33, 67, 75, 80). Similar gender finding are observed in children following conflict and ERW related injuries where all studies showed male predominance in victims, with over 70% male in three quarters of the studies (Figure 2).

Figure 2. Gender differences in in casualties following blast

ERW contribute considerable morbidity and mortality both during and following conflict. As seen in figure 3, children were more likely to be injured by UXO compared with adults, while landmines affected a predominately adult cohort (35, 37, 41, 62, 69, 70, 72, 73, 78). It should be noted that statistics on pre-hospital mortality for children in conflict settings is generally an underestimation due to the difficulties in reporting and monitoring. It should be noted overall that there is limited statistical information available currently to researchers wherever they work with blast injured children and that thus the percentages used in some of the papers they considered were unable to be supported with the full range of statistical confirmation. It is hoped that this review will provide focus for those organisations that seek to provide statistics on child conflict injuries, for instance many explosive weapons observation groups do not or who are unable to distinguish between adults and children in their reporting.

Figure 3. Percentage of Casualties (injuries and fatalities) by specific modalities

UXOs have been described as small, colourful and toy-like, promoting child interaction and subsequent injury from handling, resulting in often fatal upper limb, head, neck or chest injury (41, 44, 62, 83, 84). Due to the social nature of children, these interactions commonly occur in groups, leading to multiple casualties in 45-63% of events involving children compared to 30-40% in adults (70, 78, 79).

Occupation and education play a role in ERW injuries. It is common for children in LMICs, particularly males, to assist their family with herding and farming as opposed to attending school. This may affect the likelihood to exposure to ERWs through increased freedom to roam where such devices are present (25, 42, 64, 72). A lack of formal education impacts the
child’s ability to read warning signs; only 6-22% of victims were aware ERWs were present(27,80) and of these, only 0-11% had received ERW risk education(23,25,27,80).

Children are particularly vulnerable to wide-area explosives such as aerial bombardment and shelling, particularly in the primarily urbanised environments of modern conflicts. In the Syrian Civil War, three quarters of wide-area explosives were used in civilian residential areas that children frequent, with these mechanisms responsible for 82% of child deaths(76,82).

The following section reviews what is known of mortality in children before reviewing injury types.

Mortality

Comparison of paediatric wartime mortality data is difficult as many studies do not differentiate mechanism of injury. Edwards et al(85) study on 4,913 children between 2002-2010 presenting with blast injuries remains the single largest data set. The reported mortality rate of 8% matches well with the mortality rates of 6-9% quoted in paediatric trauma deaths from Iraq and Afghanistan, although these studies displayed all trauma mechanisms as opposed to specifying blast trauma(14,16,20,25,36,40). Between 2006-2013, Thompson et al. (58) noted a mortality rate over double of that quoted by Edwards et al. following paediatric blast injury in Afghanistan (18%). Operational tempo and the increasing use of IEDs have been hypothesized to underlie these discrepancies in mortality(58).

Age related variation in mortality has been described. Matos et al noted mortality was highest at 24% in young children (5-8 year old)(52) while Schauer et al and Spinella et al found greatest mortality in 0-4 years(30,68). Similarly, Borgman et al and Matos et al noted that children <8 years old had increased trauma mortality compared to 8-16 year olds (10-18% vs 4-7%)(15,52), while Spinella et al noted a similar increase in mortality in young children (<6 year old) compared to 6-16 year olds (11% vs 4%)(68). Few studies directly compare adult and paediatric mortality, and comparisons between studies are difficult due to methodological differences. What is common is that mortality in children following combat related trauma is considerably higher than that of paediatric non-combat trauma (2-3%)(86) and adult military combat casualties (1-3%)(87,88).

A wide range of paediatric mortality is reported following mine strikes, ranging from 4-46%(41,44,62,69–74,83). Shuker et al(89) suggested that approximately half of paediatric victims die within minutes of mine explosion, likely due to penetrating head injury, and
catastrophic haemorrhage causing non-survivable injuries, in keeping with adult literature\(^\text{(87,88)}\). Time critical injuries following blasts may represent particular problems in LMIC’s, where pre-hospital evacuation chains may be protracted. Coupland\(^\text{(90)}\) noted that in 1991, only 14\% of paediatric and adult ERW victims were admitted in under six hours, while the majority (58\%) were admitted between 6-24 hours and 28\% presented after 24 hours. Even in recent conflicts, Bitterman et al\(^\text{(13)}\) found <10\% of children presented within 1 hour, with over a third presenting after 6 hours. Protracted evacuation of paediatric victims add to blast mortality, reinforced by studies observing a 85-91\% mortality of children either at scene or en-route to health facilities\(^\text{(73,89)}\).

Vascular injuries

Penetrating injuries occur in 38-76\% of blast-exposed children \(^\text{(9,10,14,16,33,36,37,55)}\), with incidence greater in older children aged 10-16 compared to 0-10 year olds (65-83\% vs 47-63\%)\(^\text{(22,52)}\). In keeping with penetrating injury patterns, vascular injury was observed in 3-12\% of children following blast trauma \(^\text{(9,32,33,37)}\), considerably higher compared to non-blast conflict trauma where vascular injury occurred in 0.6-1\% of paediatric victims\(^\text{(9,10,24,32,53)}\).

Vascular damage and subsequent haemorrhage following explosions have been identified as a significant cause of childhood fatalities, ranging from the primary cause of death in 21-38\% during the Syrian Civil War\(^\text{(63,64)}\) to 63\% following IED and suicide attacks in Pakistan\(^\text{(67)}\), while mortality rates following penetrating injuries in civilian settings are considerably lower (5\%)\(^\text{(32)}\). Extremity trauma was most highly associated with vascular injuries, with the majority of vascular injuries occurring in the lower limb (38-58\%) followed by the upper limbs (25-28\%)\(^\text{(17,32)}\). This is in keeping with adult data where 54\% of injuries were sustained to the extremities\(^\text{(87)}\). Despite its high prevalence, extremity vascular wounds confer reduced risk of death compared to vascular damage within the torso, attributed as the primary cause of death in 71\% of paediatric deaths and conferring a four-fold increased risk of death compared to extremity vascular injuries\(^\text{(32)}\).

Data on vascular damage is clear: older children and adolescents sustain similar rates of vascular injury to adults, particularly to the extremities, while mortality following penetrating trauma is primarily the result of injuries to the vasculature within the torso.

Head injuries

https://mc.manuscriptcentral.com/bmjpo
The prevalence of head injuries following blasts are diverse, ranging from 6-54% (10,11,40,42,43,47–49,53,13,16,18,32,33,36,38,39), while adult combat data ranges from 16-29%(87). This variation is due to the heterogenous definitions of head injury described in these studies, with few studies differentiating between superficial scalp wounds, blunt traumatic brain injury (TBI) or penetrating TBI. Where head injuries were documented, TBI was recorded in 21-62% of paediatric victims, of which 38-39% were defined as penetrating(33,45,48). Unsurprisingly, papers noted over double the incidence of paediatric penetrating head injury in blast trauma compared to mainly blunt civilian trauma (13% vs 6%), while the reverse was true in closed head injuries, with half the incidence of closed head injuries in blast injuries compared to civilian trauma (22% vs 44%)(9).

Cerebral haemorrhage and direct cranial damage following blast have been attributed as a leading cause of death in children, responsible for 46-71% of fatalities (36–38,43,101). Creamer(38) noted penetrating wounds to the head accounted for 44% of child deaths in the emergency department while open skull fractures with cerebral evisceration was documented in 88% of paediatric fatalities following the 1995 Oklahoma City bombings(102). While penetrating head injuries undoubtedly carry high mortality, Woods(34) noted that 8 children survived to hospital discharge despite penetrating head injuries deemed initially unsurvivable, suggesting such are not unequivocally fatal.

Er et al(43) noted that children were more likely to be injured in the head compared to adults (54% vs 40%) following aerial and shelling during the Syrian Civil War, while young children aged between 0-4 year old were more likely to undergo neurosurgical procedures compared to other ages(20,51), 48% of which were craniectomies or craniotomies for penetrating brain injury, mainly secondary to IED blasts(51). Suggested reasons for this increase may relate to anatomical predispositions, particularly in infants, such as large head to body ratios in addition to reduced skull rigidity(22) as well as the relatively shorter distance from the head to ground-based ERW and IEDs compared to adults(18,22,62,84,89).

There is a clear lack of studies investigating long term outcomes following blast- associated head injuries. While significant cognitive, intellectual and functional sequelae arising from non-blast TBI (nbTBI) have been described, controversy exists as to whether nbTBI is analogous to blast-induced TBI(91), and the paucity of paediatric data means this comparison is even more problematic.

A unifying message is that head injuries are associated with high morbidity and mortality in paediatric blast trauma, while the long term consequences remain largely unknown. Head injuries are commonly penetrating compared to civilian practice, and increased operative
demand in infants and toddlers for neurosurgical procedures may stretch medical service expertise.

Facial and ocular injuries

Blasts result in injury to the face in between 27-48% of paediatric victims, compared to 12% resulting from GSW\(^\text{11,18,49}\) and 10% in adults\(^{87}\). Relative to other blast related injuries, facial injuries in isolation are associated with reduced mortality\(^{18}\). However, Gataa \(^{65}\) noted that of the patients presenting with facial injuries, 29% had concomitant eye injury, 22% had TBI, while life-threatening facial bleeding occurred in 10% of patients. In addition to physical sequelae, facial injuries are associated with functional and psychological disorders stemming from stigmatisation of disfiguring injuries with implications for future social, economic and marital prospects\(^{65}\).

Despite only comprising of 0.3% of the anterior body surface, the eye is sensitive to blast injury, with ocular injuries in 4-28% of children following trauma related to combat or ERW \(^{13,16,36,38,39,42,45,53,79}\). In keeping with patterns of facial injury, an increased prevalence of eye injury is associated with blast injuries compared to GSW \(^{13\% \text{ vs } 3\%}\)\(^{11}\). Landmines are often associated with multiple foreign bodies on the conjunctiva, cornea and sclera, in addition to sight-threatening injuries such as enucleation or eye globe perforation\(^{41}\). Monocular enucleation was observed in 4%, while bilateral enucleation, and hence blindness, was more common \(^{\text{14\%}}\)\(^{41,79}\). When compared to adult victims of landmines and cluster bombs, children have more eye injuries \(^{\text{14\% vs 8\%}}\)\(^{78}\) as well as twice the prevalence of eye globe perforation \(^{\text{28\% vs 14\%}}\)\(^{43}\) and complete loss of vision \(^{\text{21 vs 10\%}}\)\(^{62}\). Without adequate support, both monocular and bilateral vision loss may translate to developmental and educational deficiencies in the growing child.

Facial and eye injuries are frequent following exposure to blasts, and should raise suspicion of intracranial injury. Important are the social and education implications of these disfiguring injuries in the growing child.

Torso Injuries

Following blast injury, trauma to the torso is common, varying from 12-46% between studies \(^{11,13,41,43,47–49,67,16–18,32,36,38–40}\) and peaking in 5-10 year olds\(^{22,33}\). Er et al.’s \(^{43}\) study on civilian paediatric injuries during the Syrian Civil War noted that the abdomen was less commonly injured compared to adults \(^{\text{12 vs 20\%}}\), while chest injury with accompanying lung contusion was present in 51% of children with torso injuries, compared to 35% in adults. Both chest and abdominal injuries from blast are typically classed as
Abdominal injuries accounted for 18-19% of injury specific deaths following blast in the paediatric population, while chest injuries have been attributed to 8% of deaths in the ED(16). Explanations for this susceptibility to severe and life threatening torso injuries include a lack of body armour compared to adult combat victims and the observation that children have flexible rib cages allowing greater damage to underlying structures without rib fracture, contributing to the increase in lung contusion observed(32).

When organ specific injuries were examined, blast was most likely to cause open penetrating wounds of the bowel and intra-abdominal organs, affecting the small intestine in over a third (34%) and the liver, spleen or pancreas in 36%(16,54,61). Where internal organ damage was sustained, injury specific mortality almost doubled from 15 to 29%(63). These injuries were frequently contaminated due to bowel rupture, requiring multiple procedures and a high rate of antibiotic usage(57). The thinner abdominal walls, reduced intraabdominal fat and larger solid organs relative to the body cavity increases likelihood of visceral damage following penetrating trauma, while delayed signs of visceral damage support the role of repeated examination and radiological input, even in the absence of external damage.

In the context of total operative procedures performed, laparotomies comprised a significant component of total surgical workload, encompassing 12-23% of all paediatric procedures performed(25,58,92). Children were more likely to require laparotomies following combat trauma compared to paediatric non-combat, and primarily blunt, abdominal trauma (13 vs 2%). Children in combat zones were also twice as likely to undergo laparotomies compared to US service personnel (12% vs 6%)(68). In addition to the high prevalence of abdominal injuries, children frequently swallow air when frightened or in pain, resulting in gastric dilation. As well as increasing vomiting risk, this may erroneously suggest abdominal injury(89) and lead to laparotomy. Despite this, Arafat et al(61) noted that only 8% of laparotomies were negative, supporting the role of explorative laparotomies in penetrat ing trauma following blasts.

Compared to both adults and children in non-conflict settings, the blast injured child is more likely to sustain injuries to the chest. While abdominal injuries are less frequent, they are more likely to involve visceral damage and require operative management compared to adult combat trauma.

Extremity injuries

Extremity injury is one of the defining features following blast related trauma. Extremity injuries within conflict zones are observed in just under half of children (45%), its prevalence
increasing in blast injuries (69%)(49), with a retrospective study finding 100% of traumatic amputations and 96% of bone injuries to hand and foot were secondary to blast injuries(39).

Studies describe extreme variation in the prevalence of upper limb injuries following blasts, ranging from 6-74% (13,25,40,41,47,48,58,67,69,29,32,33,35–39), with the greatest upper limb injury reported following UXO and cluster munition strike(41,44). Compared to adult and particularly following ERW blast, children were more likely to sustain upper limb injuries (62,67,70–73) with a corresponding increase of 150-300% requiring operative amputation, typically at the level of the finger (37,66,71,72). Traumatic amputation of the upper limb was common and limited to the hands in 44-94% of children sustaining upper limb injuries(38,41), while trans-radial and trans-humeral amputation was less frequent (14-34%)(25,48) but were more likely to be bilateral(79). Arm fractures necessitating surgical fixation were observed in 45%(29), while upper limb vasculature was commonly disrupted(17,32,48).

Similarly, prevalence of lower limb injuries shows variation between studies on blast affecting 25-86% of children(13,25,48,67,29,35–38,40,41,47), with landmine strikes particularly associated with lower limb injury(35,37,41); 20-29% required operative amputations, normally at the trans-tibial plane(37,38,79). Lower limb injuries were less common in children compared to adults(62,70,72–74), with incidence lowest in 0-3 year olds(22), while increasing in adolescents to mirror adults(62). Traumatic amputations were less frequent compared to the upper limb, occurring in 14-35% of lower limb injuries(25,41,48).

Landmines drive debris, footwear and clothing upward between planes of the soft tissues and bone, leading to degloving injuries of the leg, perineum and lower abdominal viscera, as well creating serious potential for soft tissue and bone infection in the remaining limb(84,90). While large bony defects of the lower limb are problematic in children(93), reconstruction with limited shortening (<2 cm) has been associated with good outcomes, with the capability for highly active growth plates to remodel and compensate for this (39,94). However, 75% of new growth occurs in the distal femur and tibia growth plates, with the distal limb most prone to explosive disruption(84).

The long term physical, psychosocial and financial repercussions of amputation must not be underestimated. Physical complications are greatest following TA and below knee amputations, and include anterior and varus bowing, heterotopic ossification and osseous overgrowth requiring operative or prosthetic revision(95). Overgrowth is particularly problematic in younger patients (under 12 years), with 15% of patients sustaining amputations requiring re-vision of their stump. Protracted phantom limb sensation (PLS) and
phantom limb pain (PLP) is reported in over 50% of children following blast related amputation, similar to that seen in adult literature following blasts (96), yet over five times higher than in children requiring amputation following non-traumatic indications such as malignancy. Increased PLS has been reported in lower limb amputations, while PLP was increased in upper limb amputations (22,100). Social acceptance of the child amputee is culturally specific, with stigmatisation in certain cultures negatively impacting the child’s psychological, social and educational status (97). While there is a paucity of outcome and long term costing studies in LMICs, the financial burden of prolonged rehabilitation and repeated revision of prosthesis on the children and host country’s health system is likely to be considerable (97).

Like adults involved in blast trauma, older and adolescents children are prone to extremity injury, particularly of the upper limb, while infants and toddlers experience less extremity injuries. Limb injury causes diverse complications in the growing child with increased requirement for re-revision compared to adults.

Burn injuries

Multiple retrospective studies have noted that the majority of burns in children result from civilian mechanisms such as scalding, open fires and flash burns from household cooking fuels (15,16,46,98,99), while approximately 9-12% is the result of high-order explosives observed in combat blast modalities (46,99), less than observed in adult combat populations (52%) (100). Unlike civilian mechanisms however, blast-induced burns rarely occur in isolation, with multidimensional injuries playing a significant role in the child’s prognosis (33,50,99). While post-mortem findings following the Syrian Civil War attributed only 0.5% of deaths being secondary to burns (63), conflict-related burn victims had higher mortality compared to non-conflict related burn victims (47% vs 3%) (98), and significantly greater than blast related burns in adult military populations (5%) (100). Severe burns following blasts were sustained in 30% of children, and fatal in 36-40% (18,40).

Creamer (38) noted the median age of burn victims as 6 years old. At this young age, the anatomical disproportionality of the child increases the total body surface area (TBSA), resulting in significant burn surface area (BuSA). Thus, approximately half of paediatric burns in conflict zones result in BuSA >15% (32,127), while 13% of children have BuSA exceeding 40% (127). A high BuSA exceeding 40% has been linked to myocardial damage and hypotension, making hemodynamic management challenging, while complications including nosocomial infection of the burn eschar and pneumonia are not uncommon (98).
Within LMICs, protein loss and weight based fluid resuscitation is complicated by malnourishment, while cold fluids may accentuate hypothermia (46).

In conflict related burns, the head and neck are most frequently affected, potentially leading to thermal inhalation injuries (50,99). Thermal inhalation injuries in paediatric victims are difficult to assess, and clues to inhalational injuries such as increased respiratory rate may be incorrectly interpreted in the context of physiological age discrepancies. In addition the paediatric subglottis represents the narrowest section of the upper airway, and deteriorates rapidly from burn-induced laryngeal oedema, especially in the context of failed intubation attempts (101) leading to rapid oxygen desaturation. Between 21-33% of children were identified as having inhalational injuries requiring pre-emptive or immediate intubation to protect the airways (50,53), similar to that seen in adult combat casualties (26%) (100). Of this paediatric cohort with inhalational injuries, 39% died (50), significantly greater than in adult populations (4%) (100).

Prognosticating factors noted for burns include increased time to presentation, prolonged hospital length of stay and requirement for critical care input (98). This relates to the resource-intensive management of the paediatric burns patient. Like adults, hospital length of stay for burns patients are 2-3 times that of the general paediatric population (36,99), while ICU requirements are increased, particularly in burns secondary to blast injuries (98,99). Operative demands of paediatric burn victims are significant. Children aged 6 months to 3 years were between 4-14 times more likely than adults to require surgical input, reflecting the significant burden of burns (39% of this cohort compared to 2-6% in adults (102)). While other conditions may be treated by a single operation, burns often require serial procedures (102), with an average 2 operations per patient. This creates a disproportionate operative volume in both adults and paediatric patients compared to other surgical emergencies (102). Burns induced by blast injuries require more escharotomies (27% vs 4% P<0.001) and fasciotomies (67% vs 30% P=0.002) when compared to civilian burn mechanisms (98).

Additionally, the requirement for post-operative support and rehabilitation add to the resource requirements. Children are rarely left without functional sequelae, with limited joint mobility and impaired tactile sensation presenting significant future challenges for rehabilitation (103), while high rates of psychological morbidity including suicidal ideation have been reported in adolescents (104). Under-resourcing psychological and functional rehabilitation will likely lead to high rates of morbidity and mortality (102). The degree to which these services are available within conflict zones and LMICs is uncertain. Ethical questions naturally arise when performing interventions where health systems are unlikely to
address a child’s long term needs. Examination of existing paediatric burn services within zones of interest and longer term follow up of paediatric blast burn patients are required to determine the problems and needs for this cohort.

Service provision

Relative to total admissions, paediatric victims affected by blasts constitute a disproportionately large resource burden on operative workload, as well as intensive care and hospital beds. Approximately 47-82% of paediatric blast victims require surgery(22,33,36,58,61), particularly adolescents(22). The requirement for multiple operative procedures were common in the paediatric cohort, especially in burn and orthopaedic surgery due to the requirement for surgical revision (34-80% of children required ≥2 procedures(16,18,36,38–40,42,54); 25% required ≥4 procedures)(16). Operative requirement was greatest in 9-14 year olds, requiring on average 5 procedures per patient, prolonged ICU and hospital stay, while 0-3 year olds required the least operative management(20). This study suggested the reduced requirement for operative input in 0-3 year olds may be due not only to the reduced burden of extremity injuries requiring repeated debridement, but potentially because the equipment was inappropriate for this young cohort. This is supported by observations that infants and young children aged 0-10 years old with an Injury Severity Score ≥15 were 4x less likely to go to surgery compared to adults, while adolescents (11-15 years) were 2x more likely to receive operative input(22).

Multidisciplinary surgical services were required in 80% of patients, with orthopaedic, plastic, general neurosurgical, ophthalmic and vascular surgeons often working in partnership(48). Debridement and primary skin closure represented the most common procedure, in 35-100% of studies(25,29,36–38,47,58,68), in keeping with shrapnel injuries leading to multiple and frequently contaminated superficial injuries(29,47). Children are likely to do well with thorough debridement, with well perfused tissues allowing optimal healing and scar formation(39,94).

Retrospective studies of US military medical treatment facilities (MTF) in Afghanistan have found that while children comprised only 3-6% of their total admissions, this demographic required approximately double the total bed spaces (7-11%)(14,19,53), and on average 3x the length of stay (LOS) of coalition troops admitted over the same time period(14,68). Approximately 40% of paediatric admissions required a LOS exceeding 7 days, while, in half, the LOS exceeded 14 days(10,33). Spinella et al noted that while children aged 11-17 were the greatest proportion of children occupying beds, <1 year old cohort had the longest
stay(68). This contrasts with other studies finding young children <8 years old had the shortest LOS, while children (8-14 years old) had the longest (14,18).

A similar burden is observed in the intensive care unit (ICU), with between 20-45% children requiring ICU admission (5,30,33,36,43,50,53,54,61), the majority following explosive or ballistic trauma. Children were often younger (0-10 years old) (22), with one recent study noting children aged <1 year and 1-4 years most often requiring admission (53 & 66% respectively) (30). Children under 8 required an ICU LOS over twice that of children aged >8 years (52). Harris et al (5) noted that despite representing only 12% of admissions, children occupied on average 35% of ICU beds, with a brief surge in numbers resulting in 100% occupancy from children, the majority requiring ventilatory and ionotropic support. This specialised service was often provided by non-paediatric experts, which could result in 2 healthcare providers per paediatric patient (5). Ventilatory equipment is often age specific, and although multiple examples of ingenuity and adaptation of adult equipment exist (5,54), children may overwhelm the unprepared MTF.

One of the key challenges is providing sustainable health services in the host country. MTFs may be capable of delivering exceptional paediatric care in the acute phase following blasts, but recovery from morbidity is dependent on long term rehabilitation (94) normally provided by the host country. Not only can this place exceptional strain on local health authorities, but if provisions are not available, the child is likely to undergo a protracted decline (5,94). Failures to secure recovery in the long term is likely to result in the limitations in observing the Articles of the UNCRC, as listed in the Introduction to this review.

Reasons for the high rate of admission and prolonged stay may be multifactorial. Admission criteria for host nationals to a coalition MTF typically require threat to life, limb, or eyesight, with resulting prolonged stay. Interestingly however, children with mild to moderate traumata are three times more likely than adults to be admitted (22). This may reflect a lack of certainty in initial assessment of injury severity from health practitioners unaccustomed to dealing with children. Within conflict zones, rearwards evacuation of civilians is not always possible, and health interventions such as ventilatory support may not be sustainable by host countries without deterioration in service standards, leading to prolonged admission until the child can be safely moved (5).

Following up recovery is a recurring theme when exploring long term challenges of blast injuries in children (6). Children are a complex cohort to monitor. Geographical displacement, particularly in the context of a conflict, increases the likelihood of this vulnerable cohort being lost to follow-up. This can impact not only the child’s rehabilitation and coordination with local
health authorities, but also cause difficulty in assessing long-term functional outcomes which are needed to detect future health needs. Increasingly there is recognition of the need for formalised trauma registries accessible in the host country, assisting the follow-up of this vulnerable demographic (6,18,19,53).

Conclusion

This review has focused on research based on those child patients injured by blast primarily (although not exclusively) in conflict zones in the Middle East and Afghanistan. Although the papers under review were written by authors from a wide variety of nationalities and professions that encounter paediatric blast injury and its effects, they all wrote in English for journals which assumed a level of English fluency in their readership. Non-English research, both written and published in non-English journals was outside the purview of the study. The authors of the study sincerely hope that future work will be able to address this by comparing research on paediatric blast injury done in settings and with study parameters that may differ from those considered here. In doing so a truly global understanding of the condition may be achieved, beyond our focus on today’s conflict zones.

Most paediatric blast injury is inflicted in these settings but is not exclusive to them. In Britain in May 2017, a bomb detonated at the Manchester Arena killing 23 people and injuring 139, most of whom were children. The attack placed a sudden and significant burden on medical services in the city, which had no experience of paediatric blast injury in the 21st century, let alone on this kind of scale.

Wherever in the world they live, and whatever the circumstances of the explosion, the social and anatomical profile of children makes them uniquely vulnerable to one of the most complex and demanding trauma conditions that any medical professional or system can treat. This paper has characterised paediatric blast as a diverse injury pattern, which must be seen as distinct from its adult equivalent. This pattern should be fully understood from point of wounding through the post-operative and rehabilitation phases of treatment. This continuum approach would enable both better long-term care of the patient, and improved support of medical systems bearing the intense burden of that care.

It remains to be seen whether the monitoring of the long term effects of paediatric blast injury in well-resourced environments is any better than that in areas of instability. Monitoring of patient outcomes should be integrated with the monitoring of treatment so that relevant practice and skills can be continually assessed. Thus the authors join with other organisations concerned with the welfare of the world’s children (such as the recently
established BRANCH Consortium - Bridging Research and Action in Conflict Settings for the Health of Women and Children) in calling for immediate action to fill the evidence and policy gaps relating to child conflict injury and the interventions needed to improve its long term outcomes.

It has been our intention in conducting this review to provide specific technical medical detail of one of the greatest horrors in our world today – that of the direct effects of war on children. We hope it will be useful to everyone, from medical researchers to humanitarian organisations, who seek to mitigate those effects, and secure the safety and wellbeing of children wherever they grow up. It is not only coherence in treatment and understanding of child blast injury that is required, it is a restatement of global commitment to the UN Convention on the Rights of Child, so that today’s horrors will not become those of tomorrow.

Acknowledgments

The authors are grateful to Dr David Inwald for his detailed comments on this review.

References

78. Kinra S, Black ME. Landmine related injuries in children of Bosnia and Herzegovina

86. Regional K, Regional O, Florida I. Comparison of Outcomes for Pediatric Trauma at Different Types of Trauma Centers: The Unresolved Mystery. 2016;1054–8.

88. Eastridge BJ, Salinas J, Ph D, Wade CE, Ph D, Blackbourne LH. Hypotension is 100 mm Hg on the battlefield. AJS. 2011;202(4):404–8.

96. Article O. The Experience of Phantom Limb Pain in Patients With Combat-Related Traumatic Amputations. 2008;

103. Zeitlin REK, Järnberg J, Somppi EJ, Sundell B. Long-term functional sequelae after

47580 potentially eligible studies identified by database and website searches

4433 duplicates excluded

43147 identified for title screening

42241 excluded after title screening

906 abstracts screened

664 excluded after abstract screening

242 full-text articles assessed for eligibility

168 excluded
- 64 not specifying paediatric patients
- 52 not specifying explosive exposure type
- 18 not original research
- 16 could not access full text
- 15 incorrect topic
- 3 not in English

74 included in review
The bar chart illustrates the percentage of casualties (injuries & fatalities) among males and females across different contexts.

- **Terrorism (n = 7,950)**
 - Males: 75.9%
 - Females: 24.1%

- **Conflict (n = 259,352)**
 - Males: 86.9%
 - Females: 13.7%

- **ERW (12,815)**
 - Males: 87.1%
 - Females: 12.9%