The Change-Plane Cox Model

Susan Wei and
Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A., susanwei@umn.edu

Michael R. Kosorok
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A., kosorok@unc.edu

Summary

We propose a projection pursuit technique in survival analysis for finding lower-dimensional projections that exhibit differentiated survival outcome. This idea is formally introduced as the change-plane Cox model, a non-regular Cox model with a change-plane in the covariate space dividing the population into two subgroups whose hazards are proportional. The proposed technique offers a potential framework for principled subgroup discovery. Estimation of the change-plane is accomplished via likelihood maximization over a data-driven sieve constructed using sliced inverse regression. Consistency of the sieve procedure for the change-plane parameters is established. In simulations the sieve estimator demonstrates better classification performance for subgroup identification than alternatives.

Keywords

Latent Supervised Learning; Projection Pursuit; Random Projection; Sieve Estimation; Sliced Inverse Regression; Subgroup Discovery

1. Introduction

Projection pursuit, the analysis of high-dimensional data via its lower-dimensional projections, is a common tool in exploratory data analysis. The idea is to search for projections that reveal interesting structure in the data. In this work, we present a projection pursuit technique in survival analysis where a projection is considered interesting if it leads to a separation of survival outcomes. The proposed technique is based on the change-plane Cox model, set forth below.

Supplementary material

Supplementary material available at Biometrika online includes 1) descriptions of the recursively imputed survival tree and Li’s double-slicing method, 2) implementation details of all methods used in the simulations and data analyses, 3) results of the sparse exponential simulation, and 4) analysis of two survival datasets.
Let \((X, Z, U)\) be a random vector of covariates, where \(X \in \mathbb{R}^p\), \(Z \in \mathbb{R}^q_1\), and \(U \in \mathbb{R}^q_2\). Let \(\mathbb{S}^p\) be the collection of unit vectors in \(\mathbb{R}^p\). The following assumptions constitute what shall be called the change-plane Cox model:

Assumption 1. The hazard function of the true survival time \(T\) has the form

\[
\lambda(t \mid X, Z, U) = \exp\left(\beta_1^T Z + \beta_2 1(\omega^T X \geq \gamma) + \beta_3^T Z 1(\omega^T X \geq \gamma) + \beta_4^T U\right) \lambda(t),
\]

where \(\omega\) is an element of \(\mathbb{S}^p\), \(\gamma\) is in some known interval \([a, b]\), \(\beta = (\beta_1, \ldots, \beta_4)\) is the vector of regression parameters with at least either one of \(\beta_2\) or \(\beta_3\) nonzero for model identifiability, and \(\lambda(t)\) is an unknown baseline hazard function;

Assumption 2. The survival time \(T\) with hazard function (1) may be subject to right-censoring at a censoring time \(C\) which, conditional on \((X, Z, U)\), is independent of \(T\);

Assumption 3. \(X\) and \((Z, U)\) are independent.

We observe the covariate vector \((X, Z, U)\), the censored time \(T = \min(T, C)\), and the censoring indicator \(\delta\), where \(\delta = 1\) if \(T \leq C\) and \(\delta = 0\) otherwise. By seeking the change-plane, given by \(\omega^T X = \gamma\), we accomplish our goal of finding a lower-dimensional projection of \(X\) that reveals two subgroups with differentiated survival.

To fix ideas, imagine \(X\) to be a set of biomarkers potentially predictive of survival, \(Z\) a categorical treatment variable, and \(U\) a set of baseline covariates such as age or gender. In this case, the regression coefficient \(\beta_3\) represents the interaction effect between treatment and the subgroup indicator \(1(\omega^T X \geq \gamma)\). A significant \(\beta_3\) is of practical interest since it would suggest the presence of treatment heterogeneity.

Rigorous assessment of \(\beta\)'s significance is likely to be challenging considering results in Pons (2003). There, it is shown for a certain change-point Cox model, which may be viewed as a special case of (1), that the maximum partial likelihood estimator for the change-point is \(n\) consistent but root-\(n\) consistent for the regression coefficients. Such non-regularity can be expected in the change-plane Cox model as well. Leaving distributional theory to future work, we propose in the meantime a resampling procedure in the Supplementary Material that serves as a heuristic proxy for assessing the significance of \(\beta\).

2. Methodology

2.1. Overview

Our aim in this section is to propose an estimation scheme for the change-plane parameters in (1) based on a sample of \(n\) independent and identically distributed replicates of \((R, T, \delta)\) where \(R = (X, Z, U)\) denotes the full covariate set. The maximum partial likelihood estimator of the change-plane parameters can incur overfitting even when the dimension of \(X\) is moderately high, e.g., \(p = 25\). This consideration leads us to employ a regularization technique known as Grenander’s method of sieves (Grenander, 1981), in which
maximization takes place over an approximating subset of the parameter space called a sieve. It is desired that the sieve be dense, in a sense that will be later made rigorous in Definition 2. Interestingly, as demonstrated by Geman & Hwang (1982) in the context of nonparametric density estimation, regularization of the likelihood via the method of sieves may produce consistent estimators even when the full maximum likelihood estimator is not.

A sieve maximization scheme for fitting (1) is as follows. Collect the parameters into \(\theta = (\beta, \omega, \gamma) \). The sample log partial likelihood under (1) is

\[
L_n(\theta) = n^{-1} \sum_{i=1}^{n} \left\{ \delta(R_i, \theta) - \delta_i \log \left[\sum_{j: T_j \geq T_i} n^{-1} \exp\{\eta(R_i, \theta)\} \right] \right\}
\]

where \(\eta(R, \theta) = \beta_1^T Z + \beta_2 1(\omega^T X \geq \gamma) + \beta_3^T Z 1(\omega^T X \geq \gamma) + \beta_4^T U \). The factor \(n^{-1} \) is added for consistency with the empirical process notation in Section 3. Now, let

\[
M_n(\omega, \gamma) = L_n(\hat{\beta}_n(\omega, \gamma), \omega, \gamma)
\]

where the quantity \(\hat{\beta}_n(\omega, \gamma) = \arg \max_\beta L_n(\beta, \omega, \gamma) \) is uniquely defined and can be found via Newton’s method. We shall focus on the estimation of \(\omega \) since, once it is determined, the other parameters in (1) can be estimated by profiling.

Definition 1. For a sieve \(\Omega_n \subset \mathbb{S}^p \), the corresponding sieve estimator for \(\omega \) in (1) is

\[
\hat{\omega}(\Omega_n) = \arg \max_{\omega \in \Omega_n} M_n(\omega, \gamma(\omega))
\]

where

\[
\gamma(\omega) = \arg \max_{\gamma \in [a, b]} M_n(\omega, \gamma)
\]

The success of the sieve estimator hinges on the specification of the sieve. The remainder of Section 2 describes the construction of a data-driven sieve.

2.2. Initialization of the sieve

Algorithm 1 details the construction of an initial sieve consisting of vectors that represent possible change-planes in the \(X \) covariate space. Consideration of computation time leads to the particular choices in Algorithm 1, such as the number of clusters \(K \), chosen deliberately so that \(|\Omega_0| \) is linear in \(n \). Similarly, the discarding of clusters with fewer than four elements and the downsampling of clusters with more than ten elements are taken merely for computational gain. To get a sense for the size of \(\Omega_0 \), consider that Algorithm 1 applied to
the simulations in Section 4 results in $|\Omega_0| \approx 3000$ for sample size $n = 100$. If computation time is a nonfactor, better empirical performance of the overall sieve procedure (Algorithm 2 in the next section) has been observed for Ω_0 in Algorithm 1 with a larger number of elements.

Algorithm 1. Initial sieve Ω_0

Input: $\{X_1, \ldots, X_n\}$

- Initialize Ω_0 to the empty set;
- Set K to $n/10$;
- Partition the data $\{X_1, \ldots, X_n\}$ into K clusters using K-means clustering;
- Discard clusters with fewer than four elements;
- Retain ten elements at random for clusters with more than ten elements;

foreach remaining cluster do

- **foreach non-overlapping partition of the cluster into two parts P_1 and P_2 do**
 - Add to Ω_0 the unit-length vector that connects the centroids of P_1 and P_2;

Output: Ω_0

2.3. Updating the sieve using sliced inverse regression

We next update Ω_0 by incorporating survival information using sliced inverse regression (Li, 1991). We first briefly review the technique. Sliced inverse regression is based on a model in which a response variable S and a covariate vector X in \mathbb{R}^p satisfy

$$S = f(\kappa_1^T X, \ldots, \kappa_k^T X, \epsilon) \quad (5)$$

for unknown constant vectors κ_j’s of the same dimension as X, unknown function f, and noise term ϵ that is independent of X. Below is the linearity condition, satisfied by X with elliptically symmetric distributions, used to justify sliced inverse regression.

Condition 1. For any $b \in \mathbb{R}^p$, $E(b^T X \mid \omega_0^T X)$ is linear in $\omega_0^T X$.

If X satisfies Condition 1, then for every s, the centered inverse regression curve, $E(X \mid S = s)$, is in the span of $\{\Sigma \kappa_1, \ldots, \Sigma \kappa_k\}$ where $\Sigma = \text{cov}(X)$. Thus, the space spanned by the k eigenvectors of the covariance matrix of $E(X \mid S)$ associated with the k largest eigenvalues coincides with the span of $\{\Sigma \kappa_1, \ldots, \Sigma \kappa_k\}$. Then clearly, the span of $\{\kappa_1, \ldots, \kappa_k\}$ itself can be obtained through standardization by Σ^{-1}. The inverse regression curve is estimated empirically by slicing the range of S into H nonoverlapping intervals I_h, $h = 1, \ldots, H$ and computing the sample version of $E(X \mid S \in I_h)$.

The subscript zero will be used to denote the true parameter value under (1). Since T with hazard function (1) satisfies (5) with $k = 1$, the recovery of ω_0 in the change-plane Cox model can be accomplished via an eigendecomposition of the covariance matrix of $E(X \mid T)$, followed by standardization using Σ^{-1}. To avoid issues in estimating Σ and Σ^{-1} using their sample versions, we assume throughout the paper that $n > p$. However, rather than
slicing on T, we slice simultaneously on T and $1\{\omega^T X \geq \bar{g}(\omega)\}$ where $\omega \in \Omega_0$. Specifically, let $0 = t_1 < \cdots < t_H < \infty = t_{H+1}$ be a partition of the positive real line into non-overlapping intervals $I_h = [t_h, t_{h+1})$, $h = 1, \ldots, H$. Let $\nu(\omega)$ denote the largest-eigenvalue eigenvector of the weighted covariance matrix

$$V(\omega) = \frac{1}{H} \sum_{h=0}^{H-1} \sum_{l=0}^{H} p_{hl}(\omega) \{m_{hl}(\omega) - E(X)\} \{m_{hl}(\omega) - E(X)\}^T \quad (6)$$

where

$$m_{hl}(\omega) = E[X \mid T^* \in I_h, 1\{\omega^T X \geq \gamma(\omega)\} = l],$$

$$p_{hl}(\omega) = \text{Pr}(T^* \in I_h, 1\{\omega^T X \geq \gamma(\omega)\} = l).$$

Assuming Condition 1 holds, the rescaled eigenvector $\Sigma^{-1} \nu(\omega)$ coincides with the desired ω_0.

We now describe an estimate of $V(\omega)$ that accounts for censoring by employing the conditioning argument in Li et al. (1999). First, we have

$$m_{h1}(\omega) = \frac{E[X \mid T^* \geq t_h, \omega^T X \geq \gamma(\omega)] - E[X \mid T^* \geq t_{h+1}, \omega^T X \geq \gamma(\omega)]}{E[1 \mid T^* \geq t_h, \omega^T X \geq \gamma(\omega)] - E[1 \mid T^* \geq t_{h+1}, \omega^T X \geq \gamma(\omega)]},$$

which can be further decomposed as

$$E[X \mid T^* \geq t, \omega^T X \geq \gamma(\omega)] = E[X \mid T \geq t, \omega^T X \geq \gamma(\omega)] + E[X \mid T < t, \delta = 0, \omega^T X \geq \gamma(\omega)] \alpha(T, t, X)$$

where

$$\alpha(t', t, X) = \text{Pr}(T^* \geq t \mid X) / \text{Pr}(T^* \geq t' \mid X), \quad t' < t, \quad (7)$$

can be interpreted as a weight adjusting for the presence of censoring. This decomposition allows us to rewrite the numerator of $m_{h1}(\omega)$ as

$$E[X \mid T^* \geq t_h, \omega^T X \geq \gamma(\omega)] - E[X \mid T^* \geq t_{h+1}, \omega^T X \geq \gamma(\omega)] = E[X \mid t_h \leq T \leq t_{h+1}, \omega^T X \geq \gamma(\omega)] + E[X \mid T < t_h, \delta = 0, \omega^T X \geq \gamma(\omega)] \alpha(T, t_h, X)$$

$$- E[X \mid T < t_{h+1}, \delta = 0, \omega^T X \geq \gamma(\omega)] \alpha(T, t_{h+1}, X).$$

Thus we can slice on the observed survival time T rather than T. Let

\textit{Biometrika. Author manuscript; available in PMC 2019 December 01.}
\[\hat{c}_{i,h}(\omega) = 1\{t_h < T_i < t_h + 1; \omega^T X_i \geq \bar{T}(\omega)\} + 1\{T_i < t_h; \delta_i = 0; \omega^T X_i \geq \bar{T}(\omega)\} \hat{a}(T_i, t_h, X_i) \\
- 1\{T_i < t_h + 1; \delta_i = 0; \omega^T X_i \geq \bar{T}(\omega)\} \hat{a}(T_i, t_h + 1, X_i), \]

where \(\hat{a}(\cdot, \cdot, \cdot) \) denotes a nonparametric estimate of (7) to be discussed in Section 2.4. To estimate \(m_{h1} \) and \(p_{h1} \), we use the sample moments

\[\hat{m}_{h1}(\omega) = \frac{\sum_{i=1}^{n} X_i \hat{c}_{i,h}(\omega)}{\sum_{i=1}^{n} \hat{c}_{i,h}(\omega)}, \]

and \(\hat{p}_{h1}(\omega) = n^{-1} \sum_{i=1}^{n} \hat{c}_{i,h}(\omega) \), respectively. The estimation of \(m_{h0} \) and \(p_{h0} \) is analogous.

These components are incorporated into the data-driven sieve detailed in Algorithm 2. Let the resulting sieve be denoted \(\tilde{\Omega}_n \). The sieve estimator associated to it will be written \(\hat{a}(\tilde{\Omega}_n) \), following the notation introduced in Definition 1.

Algorithm 2. Data-driven sieve \(\tilde{\Omega}_n \) based on sliced inverse regression

Input: \((X_i, T_i, \delta_i), i = 1, \ldots, n\)
- \(H \), the number of slices
- \(\Omega_0 \), the initial sieve
- \(\hat{a}(\cdot, \cdot, \cdot) \), censoring weight estimate.

Initialize \(\tilde{\Omega}_n \subset \mathbb{S}^p \) to the empty set;

Find \(\hat{\Sigma} \), the empirical covariance matrix based on \(X_1, \ldots, X_n \);

Set \(\{t_h\}_{h=1}^{\infty} \) according to the observed range of \(T_i \)'s divided into \(H \) equal intervals with \(t_1 = 0 \) and \(t_{H+1} = \infty \);

Find \(\hat{a}(T_i, t_{h+1}, X_i), i = 1, \ldots, n; h = 1, \ldots, H; \)

foreach \(\omega \in \Omega_0 \) do

Find \(\hat{V}_n(\omega) = \sum_{l=0}^{H} \sum_{h=1}^{H} \hat{p}_{hl}(\omega)(\hat{m}_{hl}(\omega) - \bar{X}) (\hat{m}_{hl}(\omega) - \bar{X})^T; \)

Find the largest-eigenvalue eigenvector of \(\hat{V}_n(\omega) \), denote this by \(\hat{v}_n(\omega) \);

Add \(\hat{v}_n(\omega)^T \cdot \) normalized to unit length, to \(\tilde{\Omega}_n \);

Output: \(\tilde{\Omega}_n \)

Algorithm 2 is rather insensitive to \(H \) and we recommend setting it to 10. Far more critical to Algorithm 2 is the estimation of the censoring weight, the focus of the next section.

2.4. Estimation of censoring weights

The estimation of the censoring weight \(\alpha \) in (7) reduces to that of \(\text{pr}(T \geq t \mid X) \), the conditional survival function of \(T \). We shall consider two nonparametric estimates of the
latter, and hence of (7) itself. The first is the classic nonparametric kernel estimator in Beran (1981), which is described in equations (3.11) to (3.13) of Li et al. (1999) in notation similar to our setting. The corresponding censoring weight estimate shall also be referred to as Beran’s kernel estimate.

Despite its simplicity, the performance of Beran’s kernel estimate quickly deteriorates as the dimension of X increases. This limitation may be overcome by modern machine learning techniques. We shall employ the recursively imputed survival tree method proposed by Zhu & Kosorok (2012), a powerful, albeit complex, method for estimating the conditional survival function for censored data.

The recursively imputed survival tree combines imputation of censored observations with the idea of extremely randomized trees. Like the random forest, the extremely randomized tree selects a subset of candidate features at random. However, it does not search for the most discriminative cutpoints as in the random forest, rather basing itself on random thresholds for each covariate. The imputation of censored observations enables more terminal nodes, and thus more complex trees, to be constructed. Full details of the recursively imputed survival tree algorithm are given in the Supplementary Material. We have found that the recursively imputed survival tree estimate of α leads to better performance of Algorithm 2 compared to Beran’s kernel estimate, as soon as the dimension of X increases beyond a few dimensions, e.g., $p > 5$.

3. Consistency

Theorem 1 establishes the consistency of the sieve estimator corresponding to a general sieve Ω_n under the following conditions:

Condition 2. The parameter $\theta_0 = (\beta_0, \omega_0, \gamma_0)$ lies in a compact subset $\Theta = \Theta_1 \times \Theta_2$ of $\mathbb{R}^{2q_1 + q_2 + 1} \times S^p \times [a, b]$ where Θ_1 and Θ_2 are compact subsets of $\mathbb{R}^{2q_1 + q_2 + 1}$ and $S^p \times [a, b]$, respectively.

Condition 3. The covariate X has a continuous distribution and the projection $\omega_0^T X$ has a strictly bounded and positive density f over $[a, b]$.

Condition 4. The probabilities $\text{pr}(C = 0) = 0$ and $\text{pr}(C \geq \tau \mid X) = \text{pr}(C = \tau \mid X)$ are positive almost surely for some $0 < \tau < \infty$.

Condition 5. The variables Z and U lie in bounded sets.

Conditions 2 and 3 are rather technical and simplify the proof. Condition 4 is common in survival analysis, though it is not precisely true in practice, e.g. in a clinical trial with staggered entry. Condition 5 is needed for an application of the dominated convergence theorem. The statement of Theorem 1 requires a definition first.
Definition 2. A sieve $\Omega_n \subset \mathbb{S}^p$ is called dense for (1) if there exists a sequence $\omega_n \in \Omega_n$ such that $\{ \omega_n, \gamma_n(\omega_n) \}$ converges to (ω_0, γ_0) as $n \to \infty$.

Theorem 1 (Consistency of General Sieve Estimator). Suppose Conditions 2–5 and $\Omega_n \subset \mathbb{S}^p$ is a dense sieve for (1). If $\hat{\omega}_n = \hat{\omega}(\Omega_n)$ denotes the sieve estimator, then $\{ \hat{\omega}_n, \gamma(\hat{\omega}_n) \}$ is consistent for (ω_0, γ_0) as $n \to \infty$.

The proof of Theorem 1 can be found in the Appendix. Next, Corollary 1 establishes the consistency of the sieve estimator corresponding to Algorithm 2 under Condition 1 and the following meta-condition: Condition 6. The censoring weight estimate $\hat{\alpha}$ is such that for every $\omega \in \Omega_0$, $\hat{m}_{hl}(\omega)$ is consistent for $m_{hl}(\omega)$ as $n \to \infty$ for $h = 1, \ldots, H$ and $l = 0, 1$.

Though we will limit our discussion of Condition 6 to the two estimators considered in Section 2.4, its specification is left deliberately broad so as to allow for other possible censoring weight estimators.

For Beran’s kernel estimate, the arguments in the proof of Lemma 3.1 in Li et al. (1999) can be used to verify Condition 6. The application of Lemma 3.1 requires regularity conditions labeled therein as (B.1), (B.3), (B.5) and (B.8), which mostly pertain to the relationship between the bandwidth rate and the bias and variance terms of the kernel estimate.

As for the recursively imputed survival tree estimate of α, Theorem 1 of Cui et al. (2017) addresses the consistency of estimating the underlying hazard function using a similar survival tree-based method. In both cases, a single tree is partitioned enough so that the failure and censoring observations in the terminal nodes are approximately independent while maintaining a sufficient number of observations. In Theorem 1 of Cui et al. (2017), this is used to establish consistency of the resulting local Nelson-Aalen estimators for the conditional hazard estimators. For the recursively imputed survival tree, the Kaplan-Meier estimator (approximately through the Monte Carlo EM algorithm) is used instead of the Nelson-Aalen estimator.

For both Lemma 3.1 in Li et al. (1999) and Theorem 1 in Cui et al. (2017), suitable smoothness on the conditional survival function is most convenient in ascertaining the key conditions. Under Condition 3, the region where the smoothness is not met by the change-plane Cox model, i.e. the change-plane, can be bounded by a region with arbitrarily small probability.

Corollary 1 (Consistency of Sieve Estimator Corresponding to Algorithm 2). Let $\hat{\Omega}_n$ denote the sieve produced by Algorithm 2 for some nonempty initial sieve Ω_0. Suppose Conditions 1–6 hold. If $\hat{\omega}_n = \hat{\omega}(\hat{\Omega}_n)$ denotes the sieve estimator, then $\{ \hat{\omega}_n, \gamma(\hat{\omega}_n) \}$ is consistent for (ω_0, γ_0) as $n \to \infty$.

Proof. Let $\omega \in \Omega_0$. Through conditioning, we have the identity

\[\text{Biometrika. Author manuscript; available in PMC 2019 December 01.} \]
\[m_{h1}(\omega) = E[X | T^* \in [t_{h-1} + 1, t_h), \omega^T X \geq \gamma(\omega)] \\
= E[E(X | T^*) | T^* \in [t_{h-1} + 1, t_h), \omega^T X \geq \gamma(\omega)]. \]

A similar identity holds for \(m_{h0} \). By Condition 1, \(\nu(\omega) \), the largest-eigenvalue eigenvector of (6), is a scalar multiple of \(\Sigma_0 \omega \). By Condition 6, the individual components in \(\hat{\nu}_n(\omega) \) are consistent for their theoretical counterparts. Thus \(\hat{\nu}_n(\omega) \) is consistent for \(V(\omega) \) and hence the eigenvector \(\hat{\nu}_n(\omega) \) is consistent for \(\nu(\omega) \) as \(n \to \infty \). Thus, the sieve \(\Omega_n \) is dense and Theorem 1 yields the desired result. □

4. Simulation study

In this section, we use simulation to compare the sieve estimator to two alternatives. To focus on subgroup identification in the change-plane Cox model, we set \(Z = 1 \) and \(U = 0 \) in (1). This yields the reduced change-plane Cox model, with hazard function

\[\lambda(t | X) = \exp\{\beta \chi(\omega^T X \geq \gamma)\} \lambda(t). \]

Subgroup identification in this model can be viewed as a type of latent supervised learning (Wei & Kosorok, 2013) where the right-censored survival time plays the role of a surrogate training label.

The first alternative we consider is the double-slicing procedure proposed in Li et al. (1999), which simultaneously slices on the censored survival time and the censoring indicator. A critical assumption is that the censoring time also satisfies a sliced inverse regression representation, i.e.

\[C = g(k_X^T \ldots, k_X^T \epsilon, \epsilon') \quad (8) \]

where \(g \) and \(\epsilon' \) are unspecified, and \(\epsilon' \) is independent of \(X \). As Li’s double-slicing method does not automatically produce an estimate of \(\chi \), we obtain one by applying \(\gamma \) in (4) to the estimated \(\omega \). A complete description of Li’s double-slicing method can be found in the Supplementary Material.

The second alternative we consider is the standard survival tree implemented using the \texttt{RPART} package in R (Therneau & Atkinson, 2018). We use the \texttt{RPART} tree to produce a direct estimate of subgroup membership since oen cannot be obtained for the change-plane itself. This is done by thresholding the hazard rate at unity to divide the terminal nodes of the \texttt{RPART} tree into two subgroups. The \texttt{RPART} survival tree should not be confused with the recursively imputed survival tree. The latter is used in this paper solely for the estimation of \(\alpha \). It must also be said that \texttt{RPART} was implemented using default rather than carefully-tuned parameters.
The sieve estimator corresponding to Algorithm 2 is implemented as follows. The initial sieve \(\Omega_0 \) is produced according to Algorithm 1 with \(K = n/10 \). The recursively imputed survival tree is used to estimate the conditional survival function of \(T \) and, in turn, the censoring weight \(\alpha \).

The simulation setup is as follows. We draw \(n = 100 \) independent and identically distributed observations \((X, T, \delta)\) from the reduced change-plane Cox model with parameters

\[
\beta = \log 10, \quad \lambda(t) = 1, \quad X \sim N(0, I_p),
\]

\[
\omega = \left(\frac{p^{-1}/2}{p - \lfloor p/2 \rfloor}, \ldots, \frac{p^{-1}/2}{p - \lfloor p/2 \rfloor}, \frac{p^{-1}/2}{p - \lfloor p/2 \rfloor}, -\frac{p^{-1}/2}{p - \lfloor p/2 \rfloor}, \ldots, -\frac{p^{-1}/2}{p - \lfloor p/2 \rfloor} \right), \quad \gamma = 1/4,
\]

and one of three censoring mechanisms in Table 1. As this setup results in exponential survival times on either side of the change-plane with all components of \(\omega \) nonzero, we call it the abundant exponential simulation.

The average misclassification rate over 100 Monte Carlo simulations on a large independent test set (sample size 10,000) of the covariate \(X \) will serve as the measure of performance. Figure 1 summarizes the classification performance of the three methods as a function of dimension \(p \) for each of the three censoring mechanisms in Table 1.

The sieve estimator performs better than Li’s double-slicing procedure under the independent censoring mechanism, since there is no benefit to slicing on the censoring variable. In the linear censoring case, the two methods have similar performance since the sieve estimator is unlikely to provide a substantial improvement when \(C \) satisfies (8). In contrast, under the nonlinear censoring mechanism, \(C \) cannot be written as a function of a linear combination of the covariates which leads to the violation of (8) in Li’s double-slicing model. The sieve estimator slightly outperforms it in this case.

Figure 1 reveals the \(\text{RPART} \) tree has difficulty across all censoring mechanisms and dimensions, probably because the geometry of the change-plane is far from that assumed by it. When the geometry is favorable to the \(\text{RPART} \) survival tree, it can be expected to perform substantially better. An example of this can be found in the sparse exponential simulation presented in the Supplementary Material. The \(\text{RPART} \) approach is still outperformed by both the sieve estimator and Li’s double-slicing for dimensions \(p = 5, 10, 25 \). It is not until \(p = 50 \) that it shows its advantages. Nonetheless, survival tree methods for subgroup identification cannot produce subgroups that are contiguous in the covariate space, which may hamper interpretability in certain settings.

The abundant exponential simulation in this section and the sparse exponential simulation in the Supplementary Material both consider an idealized setting where the data are generated according the reduced change-plane Cox model. The sieve estimator is seen to offer generally better classification performance over both Li’s double-slicing and the \(\text{RPART} \) tree across a range of dimensions \(p \) and censoring mechanisms.
5. Future work

We originally envisioned the change-plane Cox model as a tool for performing subgroup discovery, which aims to identify subgroups with heterogenous treatment responses from a very large pool of candidate subgroups (Lipkovich et al., 2017). Given its post-hoc nature, subgroup discovery, and more generally subgroup analysis, is notoriously controversial (Wang et al., 2007). The change-plane Cox model may provide a principled, data-driven framework for subgroup discovery when the outcome of interest is survival. However, as the data examples in the Supplementary Material highlight, several issues must be addressed before the potential can be realized.

In the Supplementary Material, we apply the full change-plane Cox model to two datasets. The significance of β is assessed by repeatedly partitioning the data into training and test sets. Each time, only the training data is used to obtain an estimate of the change-plane parameters ω and γ. The significance of the regression coefficient β is then assessed in the test set, ignoring the fact that the change-plane was learned from the data. For both datasets, the resampling strategy reveals that significant β coefficients in the training data may not remain so in the test set.

Distributional theory for the parameters in the change-plane Cox model, which is currently lacking, could help identify these instances of overoptimism. For now, we recommend any application of the proposed technique always be accompanied by the resampling strategy, which seems adequate for detecting whether the subgroups discovered are real or not. A deeper issue is the challenge that data-driven approaches pose to the standard paradigm of the scientific method. When hypotheses are generated from the data, care is needed to avoid confirmation bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

The authors are grateful to all the reviewers, especially the Associate Editor, for their meticulous readings and invaluable input. The authors would also like to thank Ruoqing Zhu for helpful comments on an early version. The second author was supported in part by grant P01 CA142538 from the US National Cancer Institute and from grant DMS-1407732 from the US National Science Foundation.

Appendix

Proof of Theorem 1. Let P denote the probability measure of $W = (R, T, \delta)$ under (1). Define the empirical measure to be $P_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{W_i}$ where δ_{w} is the measure that assigns mass 1 at w and zero elsewhere. For a measurable function f, we denote $P_n f = \frac{1}{n} \sum_{i=1}^{n} f(W_i)$ and $P f = \int f dP$. Let $\tilde{W} = (\tilde{R}, \tilde{T}, \tilde{\delta})$ be a realization from P, independent of W. Let \tilde{P} and \tilde{P}_n be defined analogously for \tilde{W}. Next let $Y(t) = 1(T \geq t)$ be the at-risk process. Using empirical process notation we can write (2) and (3) as $L_n(\theta) = \tilde{F}_n(\tilde{\eta}(\tilde{R}, \theta) - \log \tilde{F}_n[\tilde{T}, \theta])$ where
The first condition of the argmax theorem holds since following conditions are sufficient to obtain consistency: 1) The sequence \(\{\hat{\beta}_n, \hat{\gamma}_n\} \) satisfies

\[
F_n(t, \theta) = \mathbb{P}_n Y(t) \exp(\eta(R, \theta)) \quad \text{and} \quad M_n(\omega, \gamma) = \mathbb{E}_n [\eta(\tilde{R}, \tilde{T}, \tilde{\delta}) - \log F_n(\tilde{T}, \hat{\beta}_n(\omega, \gamma), \omega, \gamma)].
\]

In the expressions for \(L_n \) and \(M_n \), the random variables \((\tilde{R}, \tilde{T}, \tilde{\delta})\) in the first term on the right-hand side have their expectations taken with respect to \(\mathbb{P}_n \). In the second term on the right hand side, two successive integrations take place: first the expectation of \((R, T, \delta)\) in \(F_n \) with respect to \(\mathbb{P}_n \) and then the expectation of \(T \) with respect to \(\mathbb{P}_n \). Let \(F_0(t, \theta) = PY(t) \exp(\eta(R, \theta)) \). The corresponding population versions of \(L_n \) and \(M_n \) are

\[
L_p(\theta) = \mathbb{P}_0 \{\eta(\tilde{R}, \theta) - \log F_0(\tilde{T}, \theta)\}, \quad (A1)
\]

and

\[
M(\omega, \gamma) = \mathbb{P}_0 \{\eta(\tilde{R}, \beta(\omega, \gamma), \omega, \gamma) - \log F_0(\tilde{T}, \beta(\omega, \gamma), \omega, \gamma)\}
\]

where \(\beta(\omega, \gamma) = \arg \max_{\beta} L_p(\beta, \omega, \gamma) \). The subscript in \(L_p \) refers to the fact that this is a partial likelihood. Later we will use \(L \) to denote the full likelihood.

Following the argmax theorem in M-estimation theory (Kosorok, 2008, Theorem 14.1), the following conditions are sufficient to obtain consistency: 1) The sequence \(\{\hat{\omega}_n, \hat{\gamma}_n\} \) is uniformly tight; 2a) The map \((\omega, \gamma) \mapsto M(\omega, \gamma) \) is upper semi-continuous with 2b) a unique maximum at \((\omega_0, \gamma_0) \); 3) \(M_n \) converges to \(M \) uniformly over every compact set \(K \) in \(\Theta_2 \); and 4) the sieve estimator nearly maximizes the objective function, i.e.,

\[
M_n(\hat{\omega}_n, \hat{\gamma}_n) \geq M_n(\omega_0, \gamma_0) - \alpha(1).
\]

We now check each of these conditions in turn.

The first condition of the argmax theorem holds since \(\|\hat{\omega}_n\| = 1 \) and \(\tilde{T}(\hat{\omega}_n) \) must lie in the interval \([a, b]\). For condition (2a), we will show that \(M(\omega, \gamma) \) is continuous. Let \((\omega_n, \gamma_n) \) be a sequence converging to \((\omega, \gamma) \) and \(\beta_n \) be a sequence converging to \(\beta \). Then \(\theta_n = (\beta_n, \omega_n, \theta) \) is a sequence converging to \(\theta = (\beta, \omega, \gamma) \). We first show that \(\mathbb{P}_0 \{\eta(\tilde{R}, \theta_n) \to \tilde{P}_0 \eta(\tilde{R}, \theta) \text{ if } \theta_n \to \theta \} \). This can be seen to hold component-wise for \(\eta \) in light of Conditions 3 and 5. We’ll show it explicitly for one of the components. Since \(X \) is continuous by Condition 3, we have

\[
| \mathbb{P}_0 \{\omega_n X \geq \gamma_n\} - \delta(\omega X \geq \gamma) | \leq \varepsilon,
\]

where \(\varepsilon \to 0 \) as \(n \to \infty \).

If \(\beta(\omega_n, \gamma_n) \to \beta(\omega, \gamma) \) then \(F_0(\tilde{T}, \beta(\omega_n, \gamma_n), \omega_n, \gamma_n) \to F_0(\tilde{T}, \beta(\omega, \gamma), \omega, \gamma) \) almost surely. Note that \(F_0(\tilde{T}, \beta(\omega_n, \gamma_n), \omega_n, \gamma_n) \) is bounded by an integrable function under Conditions 4 and 5. This gives

\[
\mathbb{P}_0 \{\tilde{P}_0 \log F_0(\tilde{T}, \beta(\omega_n, \gamma_n), \omega_n, \gamma_n) \to \tilde{P}_0 \log F_0(\tilde{T}, \beta(\omega, \gamma), \omega, \gamma) \}.
\]

Thus to show that \(M(\omega, \gamma) \) is continuous, it suffices to establish continuity of \(\beta(\omega, \gamma) \). To see this, first note \(L_p(\theta) \) is continuous using the arguments above. Next we establish that \(L_p(\theta) \) has a unique maximum in \(\beta \) for every pair \((\omega, \gamma) \).
\[
\frac{\partial}{\partial \beta} L_p(\theta) = \frac{\partial}{\partial \beta} \ln(\theta) - \frac{P Y(T) \exp{\eta(R, \theta)}}{P Y(T) \exp{\eta(R, \theta)}} \frac{\partial}{\partial \beta} \eta(R, \theta)
\]

where
\[
\frac{\partial}{\partial \beta} \eta(R, \theta) = \{Z, 1(\omega^T X \geq \gamma), Z1(\omega^T X \geq \gamma), U\}.
\]

A straightforward calculation shows the second partial derivative with respect to \(\beta\) is strictly negative definite. Thus \(\beta(\omega_n, \gamma_n) \to \beta(\omega, \gamma)\).

We now verify condition (2b). Under (1), write the integrated hazard function of \(T\), given \(X\), as \(\exp{\eta(R, \theta)}\). The joint likelihood, in \(\theta\) and the nuisance parameter \(\Lambda\), for a single observation \((R, T, \delta)\) is proportional to \(L(\theta, \Lambda) = \exp{\eta(R, \theta)}\). Next we check (2b) by showing that the profile of \(L\) over \(\Lambda\) equals \(L_p(\theta)\) in equation (A1) up to a constant, which will then enable us to use the standard Kullback–Leibler argument for identifiability to show that \(\theta_0\) is a unique maximizer of (A4) and hence \((\omega_0, \gamma_0)\) is a unique maximizer of \(M(\omega, \gamma)\).

In \(L\), replace \(\Lambda(t)\) with \(\Lambda_s(t) = \int_0^t \{1 + sg(u)\} d\Lambda(u)\), for some other function \(g\), and differentiate again with respect to \(s\) at \(s = 0\), we obtain that the expectation of the resulting derivative is
\[
\int_0^\tau f(t)P\{Y(t)b(R, \theta_0)\} d\Lambda_0(t) - \int_0^\tau f(t)P\{Y(t)b(R, \theta)\} d\Lambda(t) = 0 \text{ for all } u \in [0, \tau].
\]

Now if we replace \(\Lambda\) in (A2) with \(\Lambda_s(t) = \int_0^t \{1 + s\delta(t)\} d\Lambda(u)\), for some other function \(\delta\), and differentiate again with respect to \(s\) at \(s = 0\), we obtain that the second Gateaux derivative is
\[
-\int_0^\tau f(t)g(t)P\{Y(t)b(R, \theta)\} d\Lambda(t),
\]
which is strictly negative when \(f = g\), implying that for fixed \(\theta\), any \(\Lambda\) which is a zero of (A2) for a rich enough collection of functions \(f\) is a maximizer over all \(\Lambda\) for fixed \(\theta\). Plug \(\delta(t) = 1(t \leq u)\) into (A2), and allow \(u\) to range over \([0, \tau]\), and we obtain that the profile maximizer of \(L\) over \(\Lambda\) satisfies
\[
\int_0^u P\{Y(t)b(R, \theta_0)\} d\Lambda_0(t) - \int_0^u P\{Y(t)b(R, \theta)\} d\Lambda(t) = 0 \text{ for all } u \in [0, \tau].
\]

Hence
\[
\frac{d\Lambda(t)}{d\Lambda_0(t)} = \frac{P\{Y(t)b(R, \theta_0)\}}{P\{Y(t)b(R, \theta)\}}. \quad (A3)
\]

Plugging (A3) back into \(L\), and removing additive terms which are constants with respect to \(\theta\), we obtain that the profile of \(L\) over the parameter \(\Lambda\) is
\[P \left(\int_0^\tau \log b(R, \theta) dN(t) - \int_0^\tau \log \left[P\{Y(t)b(R, \theta)\} \right] dN(t) \right), \quad (A4) \]

which equals to \(L_p(\theta) \) in equation (A1). Now let \(\theta_1 \) maximize (A4). Then, by the fact that (A4) is the profile of \(L \) over the parameter \(\Lambda \), there exists a \(\Lambda_1 \) such that the joint parameter \((\theta_1, \Lambda_1)\) maximizes \(L \). By the property of the Kullback–Leibler discrepancy and model identifiability, this implies that \(\theta_1 = \theta_0 \). Hence (A4) has a unique maximizer at \(\theta_0 \) and we have shown that \(M(\omega, \gamma) \) is uniquely maximized at \((\omega_0, \gamma_0)\).

Proceeding on to condition (3) of the argmax theorem, fix a compact \(K = K_1 \times K_2 \subset \Theta \) where \(K_1 \) is compact in \(\Theta_1 \) and \(K_2 \) is compact in \(\Theta_2 \). Let \(m_\delta(v, t) = \delta[\eta(v, \theta) - \log F_\delta(t, \theta)] \) and consider the class of functions \(\{ m_\delta(v, t) : \theta \in K \} \). First we consider the component \(\{ \eta(v, \theta) : \theta \in K \} \). Trivially, the classes \(\{ \beta_i \} \) for \(i = 1, \ldots, 4 \) are each Donsker, as are the classes \(\{ Z \} \) and \(\{ U \} \). The class \(\{ 1(\omega^T x \geq \gamma) : (\omega, \gamma) \in K_2 \} \) is also Donsker by the example in Section 4.1.1 of Kosorok (2008). Since products of bounded Donsker classes are Donsker, \(\{ \eta(v, \theta) : \theta \in K \} \) is Donsker. Next, we examine the component \{log \(F_\delta(t, \theta) : t \in [0, \tau], \theta \in K \} \). The class \(\{ \exp[\beta_1(\omega^T x \geq \gamma)] \} \) is Donsker, since exponentiation is Lipschitz continuous on compact sets. The at-risk process \(Y(t) \) is Donsker by Lemma 4.1 in Kosorok (2008). Thus \{log \(F_\delta(t, \theta) \}\) is Donsker. Repeating arguments for sums of Donsker classes and products of bounded Donsker classes shows that \(\{ m_\delta(v, t, \delta) : \theta \in K \} \) is a Donsker class of functions, and therefore also a Glivenko–Cantelli class of functions.

Now, let \(m_{\omega, \gamma}(v, t, \delta) = \delta[\eta(v, \hat{\beta}_n(\omega, \gamma), \omega, \gamma) - \log F_n(t, \hat{\beta}_n(\omega, \gamma), \omega, \gamma)] \). Then we can write
\[
M_n(\omega, \gamma) = F_n m_{\omega, \gamma}(\hat{R}, \hat{T}, \hat{\delta}).
\]

Since the estimated log ratio hazard \(\hat{\beta}_n(\omega, \gamma) \) lies in a compact set in \(\Theta_1 \) for all \((\omega, \gamma) \in K_2 \), the class \(\{ m_{\omega, \gamma}(v, t, \delta) : (\omega, \gamma) \in K_2 \} \) is contained in a Donsker class, which implies it is a Glivenko–Cantelli class. Thus
\[
\sup_{(\omega, \gamma) \in K_2} \left| M_n(\omega, \gamma) - F_n m_{\omega, \gamma}(\hat{R}, \hat{T}, \hat{\delta}) \right| \to 0
\]
in probability as \(n \to \infty \). Next we show that \(F_n m_{\omega, \gamma}(\hat{R}, \hat{T}, \hat{\delta}) \) converges uniformly to \(M(\omega, \gamma) \).

The uniform convergence of \(\hat{\beta}_n(\omega, \gamma) \) to \(\beta(\omega, \gamma) \) can be shown by adapting the arguments of Theorem 1 in Pons (2003). Next we show \(F_n(t, \hat{\beta}_n(\omega, \gamma), \omega, \gamma) \) to \(F_0(t, \beta(\omega, \gamma), \omega, \gamma) \) uniformly over \((\omega, \gamma) \in K_2 \). We may write \(F_n(t, \hat{\beta}_n(\omega, \gamma), \omega, \gamma) = F_n Y(t) \exp[\eta(R, \hat{\beta}_n(\omega, \gamma), \omega, \gamma)] \) and \(F_0(t, \beta(\omega, \gamma), \omega, \gamma) = F_0 Y(t) \exp[\eta(R, \beta(\omega, \gamma), \omega, \gamma)] \). We have already argued the Donsker property of the classes \(\{ 1(t \geq r) : r \in [0, \tau] \} \) and \(\{ \exp[\eta(v, \theta)] : \theta \in K \} \). Thus we conclude that \(\{ 1(t \geq r) \exp[\eta(v, \theta)] : r \in [0, \tau], \theta \in K \} \) is Donsker and hence Glivenko–Cantelli. Hence, \(M_n(\omega, \gamma) \) converges uniformly to \(M(\omega, \gamma) \) over compact \(K_2 \subset \Theta_2 \).

Finally, we look at condition (4) of the argmax theorem. If the sieve \(\Omega_n \) is dense, there is a sequence \(\{ \omega_n, \gamma(\omega_n) \} \in \Omega_n \times [a, b] \) that converges to \((\omega_0, \gamma_0)\). By definition
\[M_n(\omega_n, \gamma(\omega_n)) \geq M_n(\omega_n, \gamma(\omega_n)) \]. By the continuity of \(M(\omega, \gamma) \),
\[M_n(\omega_0, \gamma_0) - M_n(\omega_n, \gamma(\omega_n)) = o_P(1) \] and thus \(M_n(\omega_n, \gamma(\omega_n)) \geq M_n(\omega_0, \gamma_0) - o_P(1) \). The conditions of the argmax theorem are met, and consistency follows. □

References

Fig. 1:
Results for abundant exponential simulation. Misclassification rate over 100 Monte Carlo simulations for the sieve (solid), Li’s double-slicing (dotted), and \texttt{rpart} tree (dashed), as a function of dimension p. Vertical bars indicate Monte Carlo simulation error.
Table 1: Censoring mechanisms

<table>
<thead>
<tr>
<th>Name</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>independent</td>
<td>$C \sim \text{uniform}(0, 10)$</td>
</tr>
<tr>
<td>linear</td>
<td>$C \sim \min{\text{uniform}(0, 31.97), 20}I(\omega^T X \geq \gamma) + \min{\text{uniform}(0, 3.2), 2}I(\omega^T X < \gamma)$</td>
</tr>
<tr>
<td>nonlinear</td>
<td>$C \sim \text{exponential}(10^{-1}\exp(X_1 + X_2^2 + \log</td>
</tr>
</tbody>
</table>

We write uniform(a, b) to denote the uniform distribution with parameters a and b and exponential(μ) to denote the exponential distribution with mean μ. The independent setting is so-called because censoring is independent of X. In the linear setting, censoring is dependent on X only through the change-plane while in the nonlinear setting censoring depends nonlinearly on X.

Biometrika. Author manuscript; available in PMC 2019 December 01.