Marine mammal population decline linked to obscured by-catch

Stefan Meyer*a†, Bruce C. Robertsona, B. Louise Chiversb, and Martin Krkošekc

*Department of Zoology, University of Otago, Dunedin 9054, New Zealand; †Wildbase, Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North 4442, New Zealand; and ‡Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2

Edited by Alan Hastings, University of California, Davis, CA, and approved September 7, 2017 (received for review February 23, 2017)

Declines of marine megafauna due to fisheries by-catch are thought to be mitigated by exclusion devices that release nontarget species. However, exclusion devices may instead conceal negative effects associated with by-catch caused by fisheries (i.e., unobserved or discarded by-catch with low postrelease survival or reproduction). We show that the decline of the endangered New Zealand (NZ) sea lion (Phocarctos hookeri) is linked to latent levels of by-catch occurring in sub-Antarctic trawl fisheries. Exclusion devices have been used since 2001 but have not slowed or reversed population decline. However, 35% of the variability in NZ sea lion pup production is explained by latent by-catch, and the population would increase without this factor. Our results indicate that exclusion devices can obscure rather than alleviate fishery impacts on marine megafauna.

Significance

Declines of marine megafauna such as turtles, pinnipeds, and whales are often related to mortality caused by capture or entanglement in fisheries gear. To help recovery of these species, trawl fisheries have implemented exclusion devices that release nontarget species. Despite decades of use, there has been no empirical evaluation of whether or not exclusion devices aid recovery of affected species. Long-term data on the endangered New Zealand sea lion and a trawl fishery in the Southern Ocean indicate that exclusion devices have paradoxically contributed to ongoing decline rather than recovery. Exclusion devices obscure the postrelease impact of elevated mortality or reproductive failure; meanwhile, reduced levels of reported by-catch may mislead management that continued decline is not associated with fisheries.

Author contributions: S.M. and M.K. analyzed data; and S.M., B.C.R., B.L.C., and M.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

†To whom correspondence should be addressed. Email: stefanmeyer621@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703165114/-/DCSupplemental.
Sea lion exclusion devices (SLEDs) were first introduced into the Auckland Islands squid fishery in 2001 and were comprehensively used since 2004 (32). SLEDs consist of a grid that prevents sea lions from entering the net and instead directs them to an opening at the top of the net (30). Since 1996, fishing vessels in the Auckland Islands squid fishery have been partially monitored by observers to estimate by-catch for the entire fishing fleet (33). We compiled two fishery variables for the Auckland Islands squid fishery: (i) the by-catch rate (BR) in year t and (ii) the interaction rate (IR) in year t (SI Appendix, Fig. S1 A and B). The BR is the estimated number of NZ sea lion captures that were landed on deck per unit fishing effort (a single tow), whereas the IR is the estimated total number of NZ sea lion captures per unit fishing effort (i.e., those landed on deck plus those that were ejected through SLEDs dead or alive with unknown postrelease survival and reproductive success) (see Methods). The hypotheses of prey depletion via environmental change or fisheries as well as carrying capacity overshoot imply density-dependent mortality or reproduction, and so we also tested for density dependence in the population growth rate. To account for variability in environmental conditions in general and resource depletion either naturally or due to commercial fishing, we also fitted the model to direct and lagged (by 1 y) covariates of sea surface temperature (SST) anomaly and catch of arrow squid per unit fishing effort (for example, the Pearson correlation coefficient between squid catch per unit fishing effort and 1-y lagged SST anomaly is −0.516), which could affect pup production in pinnipeds (34, 35), and arrow squid has been identified as a consistent prey species for NZ sea lions (30).

Results

Using a Bayesian approach, we fitted first-order autoregressive process [AR(1)] models that represent Gompertz population growth and that have previously been applied to time series of other sea lions (36) as well as several other taxa (37, 38). The model can be expanded into a multivariate form to simultaneously model multiple populations (36) and can also be expanded into a state-space process to separate variance of observed population trends into process error and observation error (38). The model is
\[
\log(n(t+1)) = \log(n(t)) + u + d * D(t) + w(t),
\]
where \(\log(n(t)) \) is the (natural) log-transformed pup production of subpopulation \(i \) in year \(t \), \(u \) is the population growth rate, and \(d \) is the effect size in response to covariate \(D \). \(w(t) \) is a multivariate Normal distribution with mean zero, temporal SD (\(\sigma \)) of pup production, and the temporal correlation between both subpopulations (\(\rho \)) described by the variance–covariance matrix \(\mathbf{Q} \) (i.e., \(w(t) \sim MVN(0, \mathbf{Q}) \)). The parameters \(u, d, \) and \(\sigma \) are the same for both subpopulations (SI Appendix). To include observation error of pup production, we modeled the observed pup production as being normally distributed with year-specific SDs that were supplied as data inputs and derived from the mark–recapture analysis used to estimate the pup production data (see Methods and SI Appendix). A preliminary exploration of the model structure (SI Appendix) suggests that NZ sea lion population dynamics were density-independent over the last two decades, which is consistent with a current population size that is an order of magnitude lower than the estimated historic population size (39). We additionally fitted the model without covariates to estimate the total temporal variance (\(\sigma^2_{\text{total}} \)) of pup production.

The model without covariates estimates a population growth rate (\(u \)) of −0.019 with 95% CrI: −0.079 to 0.039, reflecting currently a 74% risk of continued population decline (i.e., the proportion of posterior samples for \(u \) smaller than zero). The temporal correlation coefficient (\(\rho \)) of 0.721 (95% CrI: 0.442–0.870) indicates that both subpopulations have behaved similarly. The only covariate negatively correlated with pup production was the fishery IR (\(d = −4.195 \), 95% CrI: −6.280 to −2.132), explaining 35% of the total variance (\(\sigma^2_{\text{total}} = 0.022, \) 95% CrI: 0.014–0.040). This negative correlation remained when we considered reported 95% extremes of the confidence limits for IR (SI Appendix, Fig. S8), and in this case, IR explained 43% of total variance. To underpin our results, we conducted Gibbs variable selection (40) for the model with IR as covariate in various combinations with other predictor variables assessed here, which estimated a 0.95 or larger posterior model probability to only include IR in the model (SI Appendix, Table S2). Including an interaction between lagged SST anomaly and catch of arrow squid resulted in a 0.84 probability for including only IR (note that probabilities are distributed across many combinations when model interactions are included; see SI Appendix, Table S2). Furthermore, this result was not affected when adding observation effort (in the Auckland Islands squid fishery) as an interaction with IR (SI Appendix, Table S2). Models considering any of the other predictor variables without IR had close to zero probability (SI Appendix, Table S2). Similarly, there existed no support to include BR into the model (probability 0.06–0.08; see SI Appendix, Table S2). Predicted pup production, based on estimated parameters from the model including IR (SI Appendix), was consistent with observed time series of pup production (Fig. 2).

In the absence of fishery by-catch (i.e., when IR in the fitted model is set equal to zero), the model indicates that the NZ sea lion population would increase at rate \(u = 0.214 \) (95% CrI: 0.086–0.343). This is further emphasized by the empirical observations of annual

Fig. 1. Main breeding area (Auckland Islands) of NZ sea lions with currently active subpopulations Sandy Bay (Enderby Island), Dundas Island, and Figure of Eight Island.
growth rates $[\log(n(t)/n(t-1))]$ for both subpopulations, which are negatively correlated with IR (Fig. 3 A) and BR (Fig. 3 B; $z = -4.317$, $df = 17$, P value = 0.000468). In contrast, all other covariates we considered had negligible explanatory power of NZ sea lion population trends. BR and the environmental covariates explained each between -4% (i.e., in some cases σ^2 was negatively biased to σ^2_{noise}) and 0% of the total variance. The mortality parameter (d) from the BR was -0.893 (and -0.725 when 95% confidence limits of BR were included), but the 95% CI overlapped zero (SI Appendix, Fig. S8). The effect sizes for the environmental covariates were all close to zero (SI Appendix, Fig. S8). Estimated effect sizes as well as the Gibbs variable selection were not affected by the choice of prior distributions (SI Appendix, Figs. S6, S7, and S13–S16 and Table S2).

To further evaluate the sensitivity of our results to uncertainty in the IR covariate caused by the initial introduction of SLEDs in 2001 and comprehensive SLED use since 2004 (32), we also fitted the models to time series truncated at years 2001 through 2005. For these sections of the time series, the IR is equal to the BR up to 2001, but they then diverge by 2004 when SLEDs were widely implemented (Fig. 3C). None of these scenarios altered the estimated effects of IR on NZ sea lion population dynamics (SI Appendix, Fig. S11), whereas the correlation between pup production and BR eroded as the length of the time series increased (i.e., where IR and BR diverge) (SI Appendix, Fig. S12). These analyses of time series scenarios further reinforce the conclusion that it is the fishery interaction (IR) rather than landed by-catch (BR) that is influential for NZ sea lion population growth.

Discussion

Our results provide population-level empirical analysis of the effectiveness of exclusion devices for protecting an endangered marine megafauna from fisheries by-catch in a situation of high compliance. The results indicate that exclusion devices designed and implemented for the endangered NZ sea lion have likely failed to reverse population decline and instead contribute to imperilment by concealing mortality or reproductive failure caused by by-catch. There are other situations where exclusion devices have been ineffective, but those are mainly due to non-compliance among fishers to install or correctly operate them, such as marine turtles (41). Many predictions exist from simulation models that marine megafauna, including NZ sea lions, should respond positively to by-catch reductions (e.g., refs. 15, 17, 18, and 20) and many empirical analyses indicate exclusion devices have reduced megafauna BRs (e.g., refs. 13 and 42). The missing links in this body of work are that analyses do not account for postrelease mortality and/or failed reproduction, and the model predictions for improved population growth have not been empirically tested. Our analysis provides an empirical test of those predictions, and contrary to expectation, our results indicate that, under conditions of high compliance, exclusion devices may contribute to population decline rather than aid recovery.

It is difficult to determine the fate of individuals released through by-catch mitigation devices. Our results indicate that live NZ sea lions that are released from SLEDs suffer elevated subsequent mortality or reproductive failure, which would likely be caused by injuries sustained during collision with the exclusion grid or temporary entanglement (43). Autopsies of purposely retained individuals are inconclusive, because it is not possible to differentiate between trauma-related lesions, preexisting conditions, or artifacts owing to carcass freezing (44). It was further not possible to observe the fishery interaction via underwater video footage due to poor visibility at fishing depths (44). Moreover, data to simulate concussion probabilities of NZ sea lions that collide with the grid had to be derived from human crash tests and fur seals in Australian fisheries (44). Clearly, more research is needed on postrelease survival and reproduction to avoid underestimating population-level impacts of by-catch (45).

While we have focused on the Auckland Islands squid fishery, there also exist several, partially monitored, trawl fisheries (without SLEDs) that operate adjacent to the Auckland Islands (12, 33). Although those fisheries do not strongly overlap with female NZ sea lions’ foraging ranges, they may nonetheless contribute a small amount of fishery mortality to NZ sea lion population dynamics (29, 30). There are also of course multiple other nonfishery factors that affect NZ sea lion demography, and
we do not claim that fishery impact (i.e., mortality and or reproductive failure) is the sole driver of NZ sea lion population dynamics. The nine hypotheses for the NZ sea lion population decline reviewed in the introduction may well affect NZ sea lion population dynamics, but by process of elimination, our results and the literature (24, 25) leave the fishery IR as the only hypothesis that can explain the ongoing decline of NZ sea lions. Overall, that 35% of the total variance in pup production is explained by IR alone indicates that the impact from the squid fishery is likely a key driver of the NZ sea lion decline, and importantly, this is a factor that is amendable to management intervention.

One alternative hypothesis for the NZ sea lion decline that is not mutually exclusive of fishery by-catch, and is currently a focus of NZ sea lion management (46), is neonatal mortality arising from bacterial epidemics of newborn to 2-mo-old pups that occurred in 1998, 2002, and 2003 (47). The time series we have analyzed here are not suitable to test this hypothesis because any increase in pup mortality from the epidemics would be expressed in pup production time series over a 4- to 7-y distributed lag, which is the age at first reproduction for female NZ sea lions (48), causing any impact of the epidemics to widely overlap and occupy most of the time series length. However, another more detailed analysis of the age-structured mark–recapture time series data that exist for these populations has not revealed an increase in overall mortality of pups over their first year of life in association with the epidemics, indicating that disease-associated mortality is likely compensatory for pups (26). Further, even if epidemics affect overall pup survival (i.e., disease-induced mortality is not compensatory), the population-level effects of epidemics are likely to be small relative to by-catch impacts because elasticity analysis of NZ sea lion population growth has indicated a low response to pup survival compared with survival of adult females (27).

Our results also indicate that predictions from the models often used to inform modern fisheries and conservation management—complex integrated population models that have dozens to hundreds of parameters—can be diametrically opposed to observed outcomes. For NZ sea lions, the models currently used for management indicate that by-catch of NZ sea lions is not a major factor in their continuing decline (49, 50). In contrast, our statistical analysis of NZ sea lion abundance time series provides empirical evidence that fishery interactions are likely a primary cause of NZ sea lion decline. This discrepancy likely occurs because management models incorrectly assume high survival and reproductive rates of individuals ejected from SLEDs as well as structural inconsistencies such as density dependence in NZ sea lion survival (49) when there is no evidence for such effects (39). The fact that we found no evidence of food limitation (i.e., squid prey availability and or SST anomaly) further underpins that the current NZ sea lion population dynamics are not density-dependent. Clearly, by-catch of adult females requires particular attention in NZ sea lion population management, but this is not the current priority of NZ sea lion conservation management.

Empirical evidence of population recovery in response to conservation actions are relatively rare. Examples include positive population responses of African wildlife to policy that supports antipoaching programs (51), improved population trends of European birds due to several international policy interventions (52), recovery of Hawaiian green sea turtles after protection from human exploitation (53), and rebuilding of biomass of depleted fish stocks in response to management (54). For marine megafauna, Gormley et al. (55) found (for the first time) improved survival of Hector’s dolphins (Cephalorhynchos hectori) due to mitigated by-catch via marine protected areas (MPAs). In contrast, Australian sea lions (Neophoca cinerea) continue to be at risk for population decline despite several management efforts, such as the implementation of a MPA to mitigate by-catch in shark gillnets (56). For Australian fur seals (Arctocephalus pusillus doriferus), unobserved mortality owing to interaction with fishing gear remains a key uncertainty (10). Overall, for the case of marine megafauna, there is scant empirical evidence to support the conservation value of properly implemented by-catch exclusion devices, and our results highlight the need for more extensive retrospective empirical analyses of population responses to exclusion devices.

Our findings indicate that the endangered NZ sea lion continues to decline due to fishery impacts that have been obscured by the implementation of exclusion devices that release sea lions with poor prospects for postrelease survival and or reproduction. It is therefore insufficient that the efficacy of exclusion devices in general be evaluated by the extent of by-catch reduction (e.g., ref. 13) or through simulated model predictions of population

Fig. 3. NZ sea lion fishery interactions compared with instantaneous population growth rate [i.e., \(\ln(n(t) / n(t-1)) \)] of pup production (based on mean estimates): (A) Instantaneous population growth rate (black solid line) from year \(t - 1 \) to \(t \) (x axis shows year \(t - 1 \)) compared with IR (purple dashed line) in year \(t - 1 \). (B) Instantaneous population growth rate plotted against IR (solid line: slope of linear regression fit; see Results). (C) IR (purple dashed line) and BR (yellow dotted line) before SLED use (before 2001) and after SLED use (2001–2014).
responses, as is often done (e.g., refs. 17, 19, 50). Rather, evaluations should be made in terms of empirically demonstrated population responses to by-catch and its mitigation. More broadly, our results imply that the common belief that exclusion devices in fisheries gear serve to protect marine megafauna from by-catch mortality may be false. Instead, exclusion devices may contribute to declines of marine megafauna by obscuring the impact of by-catch mortality and reproductive failure, which can thereby forestall the design and implementation of alternative recovery strategies.

Methods

Data—NZ Sea Lion Abundance (Pup Production). The breeding season (i.e., mating and pupping) of NZ sea lions at the Auckland Islands spans from early December to early January the following year. The mean pupping date is December 26 or 27 (57), and most pups are born by January 2 (58). Here, we refer to the second year of the breeding season (e.g., 1997 refers to December 1996 until January 1997). For the period from 1995 to 2016, pup production estimates are based on mark–recapture experiments taking place at slightly variable dates between January 15 and January 21 at both subpopulations (22, 23). Pups were temporarily marked evenly across the breeding area and recaptured by three observers over a period of 2 d. These experiments occurred after pupping ceased and before pups disperse away from their natal birth beach (58, 59). The effort for total pup production was based on a modified Petersen estimate (60). We calculated the mean Petersen estimate and SDs (to model observation error) from raw mark–recapture data for pup production estimates given in Childerhouse et al. (22) and previous reports (SI Appendix).

The data used in this study were collected during a long-term study and permission for handling and capture of non-researched NZ sea lions (P. hookeri; males and females) was obtained from the New Zealand Department of Conservation Animal Ethics Committee under the Animal Welfare Act 1999.

Data—Covariates. The NZ fishing year spans the dates October 1 to September 30 in the next year, and the Auckland Islands squid fishery mainly operates between February and April. Here, we refer to the second year of the fishing season (e.g., 1997 refers to October 1, 1996 until September 30, 1997). Within the Auckland Islands squid fishery, between 13% and 99% (mean: 41%; SD: 24) of annual fishing effort (effort is measured in number of tows) has been landed on deck per fishing effort in year t. The Pearson’s correlation for total pup production based on the Auckland Islands squid fishery was as CPUE_squid but for the previous year. The analyzed time period for CPUE_squid ranged from 1995 to 2012. Data were requested by Bruce Robertson through the NZ Ministry for Primary Industries under the Official Information Act 1982. CPUE_squid m1 (SI Appendix, Fig. S1F) Same as CPUE_squid but for the previous year. The analyzed time period for CPUE_squid m1 ranged from 1995 to 2013.

Note that the length of the analyzed time series for pup production varied depending on the time period available for each covariate (e.g., if the final year for a covariate was 2012, then we analyzed pup production until the year 2013). The covariates BR and IR were centered to the mean of corresponding time series (i.e., BR(t) – mean{BR}), and the model predictions with IR set to zero were based on 0 – mean{IR}. The variance-covariance matrix of subpopulation i and w(t) is a multivariate Normal distribution with mean zero, subpopulation-specific species, and temporal correlation described by the variance–covariance matrix Q [i.e., w(t) MVN(0, Q)] (SI Appendix).

The state-space structure of the model is such that the observed number of pups, on real scale, in any year t at subpopulation i y(t, i) was modeled as a normally distributed random observation process (38):

\[y(t, i) \sim N(\bar{N}(t, i), \sigma_y) \]

where \(\sigma_y \) is the year-specific SD of observed pup production in each year 1996–2015. SST data were based on Rayner et al. (61) and were downloaded at www.metoffice.gov.uk/hadobs/hadisst/. SST_anomaly m1 (SI Appendix, Fig. S10) SST anomaly in the previous year. See description for SST_anomaly on how this covariate has been calculated. The analysis considered SST anomalies between the years 1995 and 2015. SST data were based on Rayner et al. (61) and were downloaded at www.metoffice.gov.uk/hadobs/hadisst/. SST_anomaly m1 (SI Appendix, Fig. S10)

This covariate was calculated for the Auckland Islands squid fishery as kg of caught squid in year t/total number of tows in year t. The analyzed time period for CPUE_squid ranged from 1995 to 2012. Data were requested by Bruce Robertson through the NZ Ministry for Primary Industries under the Official Information Act 1982. CPUE_squid m1 (SI Appendix, Fig. S1F) Same as CPUE_squid but for the previous year. The analyzed time period for CPUE_squid m1 ranged from 1995 to 2013.

Model. We began by fitting a first-order autoregressive AR(1) state-space model of population dynamics that is derived from the Gompertz growth model and is commonly used for analyzing time series of animal abundances (including other sea lion species). The model is:

\[\log(n(i,t)) = \log(n(i,t-1)) + u(i) + w(t), \]

where \(\log(n(i,t)) \) is the (natural) log-transformed pup production of population i in year t, \(u(t) \) is the mean trend or population growth rate of subpopulation i, and \(w(t) \) is a multivariate Normal distribution with mean zero, subpopulation-specific species, and temporal correlation described by the variance–covariance matrix Q [i.e., w(t) MVN(0, Q)]. (SI Appendix). The state-space structure of the model is such that the observed number of pups, on real scale, in any year t at subpopulation i y(t, i) was modeled as a normally distributed random observation process (38):

\[y(t, i) \sim N(\bar{N}(t, i), \sigma_y) \]

where \(\sigma_y \) is the year-specific SD of observed pup production in each year 1996–2015, which has been supplied as input data to the model (SI Appendix). Preliminary analyses indicated the population growth rates and variances between both sites were equal and that population dynamics were density-independent (SI Appendix). We therefore proceeded with a simpler model:

\[\log(n(i,t)) = \log(n(i,t-1)) + u + d^*D(t-1) + w(t), \]

where d is the size effect in response to covariate D (–1), u is a single growth rate for both subpopulations, and \(w(t) \) is comprised of a temporal correlation coefficient and the same variance for both subpopulations. The model was fitted in a Bayesian framework implemented in JAGS (62). We used a burn-in of 80,000 iterations followed by another 80,000 iterations, and posterior samples were taken with a thinning interval of 6. Model convergence was assumed if the potential scale reduction factor for each parameter was less than 1.1 (63) (the potential scale reduction factor for all parameters ranged between 0.99 and 1.01). A full description of the model, including prior sensitivity analysis, and its implementation is detailed in SI Appendix. Datasets and executable R-code are available in Datasets S1–S6.

Acknowledgments. S.M. thanks Scott Jarvie and Maddalena Furumaghi for helpful comments on the manuscript. We thank Thomas Mattern (University of Otago) for retrieving SST data. We also thank David Fletcher and Simon Childerhouse for supplying raw data for pup production missing in current reports. Finally, we thank two anonymous reviewers for their constructive comments, which helped to improve the manuscript. B.C.R. thanks the University of Otago for funding (PRBF). B.L.C. thanks the Institute of Veterinary, Animal and Biomedical Sciences for providing a publication fund. M.K. was funded by the Natural Sciences and Engineering Research Council of Canada, a Sloan Fellowship in Ocean Science, and a Canada Research Chair. The pup production data collected in this paper were collected with funding from the New Zealand Department of Conservation’s Conservation Services Program.