De novo design of catalytic proteins

J. Kaplan* and W. F. DeGrado**†

*Department of Biochemistry and Biophysics, School of Medicine, and †Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6059

Contributed by W. F. DeGrado, June 18, 2004

The de novo design of catalytic proteins provides a stringent test of our understanding of enzyme function, while simultaneously laying the groundwork for the design of novel catalysts. Here we described the design of an O₂-dependent peroxidase whose structure, sequence, and activity are designed from first principles. The protein catalyzes the two-electron oxidation of 4-aminophenol (kcat/KM = 1.500 M⁻¹min⁻¹) to the corresponding quinone monooimine by using a diiron cofactor. The catalytic efficiency is sensitive to changes of the size of a methyl group in the protein, illustrating the specificity of the design.

The de novo design of proteins provides a stringent test of our understanding of their molecular mechanisms of action (1–3). Recently, it has become possible to design proteins with novel three-dimensional structures (4), which has laid the groundwork for the elaboration of function. Catalysis provides a particularly challenging function to achieve, because a successfully designed protein catalyst must bind and precisely orient substrates, transition states, and intermediates adjacent to catalytic groups such as metal ions, general acids, and/or general bases. Two approaches to the design of catalytic proteins include automated sequence design, in which a novel catalytic site is engineered into a natural protein by mutating a subset of its side chains (5–7), and de novo protein design, which requires the simultaneous design of the entire backbone structure and sequence (2). The first method has the advantage of separating the problem of protein design and folding from the more restricted problem of designing an active site. The second approach has the potential advantage of greater applicability in terms of the sizes and shapes of substrates that can be accommodated. Furthermore, de novo protein design critically tests our understanding of how an amino acid sequence dictates both the folding as well as the activity of a protein.

To date, most work on the design of catalytic proteins has focused on hydrolysis of activated 4-nitrophenyl esters, using an active site histidine side chain as a nucleophilic catalyst. Automated sequence design methods have been used to design a variant of thioredoxin that hydrolyzes 4-nitrophenyl acetate with a rate enhancement of ~25-fold (7), when the value of kcat/KM was compared to the second order rate constant for hydrolysis of 4-methyl imidazole. Proteins with similar or greater catalytic efficiencies were observed frequently in a library of four-helix bundle proteins, whose polar exterior residues were randomly selected from Lys, His, Glu, Gln, Asp, and Asn (8). Baltzer and Nilsson (1) have designed a series of helical bundles that employ His residues to promote hydrolysis and intrapeptide acyl transfer reactions. It has also been possible to design helical bundles that catalyze decarboxylation of oxaloacetate (9), in one case by recognizing a key aldehyde intermediate in the reaction (10).

Automated sequence design has also been used to design catalytic metalloproteins, by introducing an Fe(II/III)-binding site into various sites within thioredoxin (5). These proteins catalyzed the superoxide dismutase reaction, as well as the formation of diffusible oxygen radical species using hydrogen peroxide and O₂ as substrates. An interesting correlation between the steric accessibility, electrochemical midpoint potential, and catalytic potential of the various sites was observed. However, to be biologically and chemically useful, it is important to design an active site that binds organic substrates and utilizes O₂ locally within the active site, rather than creating diffusible oxygen radicals, which then react nondiscriminately with organic molecules.

Here, we describe the de novo design of model diiron proteins capable of catalyzing a phenol oxidase reaction. By combining two Fe(II/III) ions within a single site, it is possible to bias the reaction toward two-electron chemistry, thereby avoiding the formation of oxygen radicals. The starting point for the present design is the dueferri (DF) family of de novo-designed diiron proteins (11–13), whose structures have been extensively characterized by NMR and x-ray crystallography (11, 14–16). Here, we focus on DFcat, a four-chain heterotetrameric helical bundle whose structure was originally designed beginning with a mathematical equation describing the positions of the backbone atoms (12). The sequence was designed by using a computational method that not only considered the stabilization of the desired fold, but also the destabilization of likely alternatives. Thus, this protein is a complete product of de novo design, in which the backbone structure, sequence, and catalytic properties are all designed from first principles.

The intended reaction mechanism (Scheme 1) involved the use of O₂ to oxidize the diferrous protein to a diferrous species. The diferrous protein then reacts with the substrate, 4-aminophenol (4AP), producing benzoquinone monooimine. The reduced diferrous form is then oxidized by O₂, thereby initiating another catalytic cycle. The released quinone monooimine product is quenched and spectroscopically detected by using a reaction (eqn. 4 in Scheme 1) first studied by Witt (17) and subsequently by Gnaediger (18) and Corbett (19).

The ultimate goal is to design an efficient catalyst that does not fall into a deep energy minimum or encounter large energy barriers along any of these steps. Thus, the immediate goal is to find the intersection of sequence space that catalyzes eqn. 1–3 in Scheme 1.

Materials and Methods

Materials. The peptides were synthesized as described (12). All buffers, metal ions, and other chemicals were of the highest quality commercially available. The sequences of the original peptides are

```
g abcdefg abcdefg abcdefg abcd
```

DFₐₐ: Ac-K LKELKLK ELQIAKQ YKELKAE LKEL-CONH₂
DFₐa: Ac-E LKELKSE ELQIAKQ FKELKAE LKEL-CONH₂
DFₐb: Ac-K LKKLKR LKKLLKL ELQIAQ YKELKAR LKEL-CONH₂
DFₐB: Ac-E LEELESE LKELKIE LKELKAE LKEL-CONH₂

The residues in the A-subunits that were varied are underlined.

General Procedures. CD spectroscopy (12) and size exclusion chromatography (13) were carried out by using methods and equipment described previously.

Size Exclusion Chromatography. Peptides were mixed in the appropriate molar ratios at ~20 μM (in each peptide) and chro...
converted to product within 15 min. Two equivalents of monoo-
mine are consumed in the formation of a single aminooaloin-
line. Kinetics were measured within 1 h to avoid complications
associated with conversion of the product to the corresponding
phenazines, the accumulation of peroxide, and other decom-
position products. Typically, initial rates, v_{init}, were deter-
determined from the first 20 min of the reaction, during which time product
formation is linear with respect to time. The Michaelis–Menton
constants were obtained from a least-squares fit to the equation
($v_{\text{init}} = V_{\text{max}}/(1 + [\text{M}]/{K_M})$). Competitive inhibition studies
were conducted by using variable concentrations of 4CP (pre-
incubated for 5 min), and fixed concentrations of 4AP (0.5 mM)
and MPD (10.0 mM). Data were analyzed by using least squares
least squares and the equation $v_{\text{init}} = V_{\text{max}}/(1 + [\text{M}]/{4\text{AP}})$
($K_M = K_M/[4\text{CP}]/K_i$), which allowed the determination of the
association constant for inhibition (K_i) as a function of the
concentration of 4CP.

Results

Design of Catalytically Active Variants. The catalytic peptides were
designed by varying the sequence of $\text{DFtet}_A\text{A}_2\text{B}_2$, which has two
typical “B” subunits and two different “A” subunits (Fig. 1
Upper Left). When mixed together in the appropriate stoe-
chiometry, the individual peptides specifically self-assemble into an
asymmetric, heterotetrameric helical bundle that binds two
metal ions at its active site (13). When identical substitutions are
desired in both the A subunits, we instead make the substitutions
in the more symmetrical DFtet_AB_2 bundle, containing two
identical A and B subunits. The advantage of constructing the
proteins by noncovalent self-assembly is that large numbers of
variants can be formed by mixing various combinations of only
few variants of each noncovalent subunit.

To introduce catalytic activity into these frameworks, we
sculpted a pocket capable of binding the substrate 4AP by
changing the residues that define the dimensions of the active
site pocket. Fig. 1 Upper Right illustrates a model for the active
site regions of $\text{DFtet}_A\text{A}_2\text{B}_2$ with 4AP modeled into the active site,
and its phenolic oxygen bridging the metal ions (metal–oxygen
distance, 2.0 Å). The substrate makes unfavorable contacts with
Ala-19 and Leu-15. The steric bulk of these residues was
therefore reduced in variants in which Ala-19 is changed to Gly
and Leu-15 is changed to either Ala or Gly in both of the A
chains.

We also made a number of symmetrical variations based on
$\text{DFtet}_A\text{A}_2\text{B}_2$. A symmetrical variant in which Leu-15 and Ala-19
of both A chains were substituted with Gly is designated
$\text{G}_{15}\text{DFtet}_A$. A second variant, in which Leu-15 was retained and
Ala-19 was changed to Gly, is designated $\text{DFtet}_{15}\text{G}_2$ (Fig. 1
Lower). Similarly, $\text{DFtet}_{15}\text{G}_2\text{A}_2$ and $\text{DFtet}_{15}\text{G}_2\text{A}_2$ have Gly or Ala
at the indicated positions.

Catalytic Activity. We first examined the ability of the proteins to
bind two equivalents of Fe(II) per tetramer, and rapidly oxidize
the bound ferrous ions to Fe(III) in the presence of ambient O2,
as measured by a strong ligand-to-metal charge transfer band
at near 528 nm. The extinction coefficient at this
wavelength ($10,700 \text{ M}^{-1}\text{cm}^{-1}$) was determined under single-
turnover conditions in which the substrate was quantitatively
determined through a Superdex 75 FPLC (Amersham Phar-
macia) column equilibrated in 10 mM Mes buffer, pH 6.5,
containing 100 mM NaCl at a flow rate of 1.0 ml/min. As a
standard for the tetrameric state, we used DFtet, which cleanly
forms a tetramer as assessed by analytical ultracentrifugation.
The protein is diluted 5- to 10-fold during chromatography,
indicating that the protein was tetrameric under concentration
range used in the kinetic experiments described below.

Binding and Kinetic Experiments. All experiments were conducted
at pH 7.0 (0.15 M Mops/0.15 M NaCl). Kinetic experiments
involving Fe(II)-binding/oxidation were performed at 25 μM
tetramer concentration under aerobic and anaerobic conditions
as described (13). The screening for phenolate binding was
initially carried out with phenol, which was added to the diferric
species as follows: (i) 2.0 equivalents of ferrous ion were added to
the desired tetramer (25 μM tetramer concentration), and the
product was incubated at room temperature for 2 h to assure
complete oxidation to the diferric species; (ii) phenol was added
to a final concentration of 25 mM; (iii) the spectra were
measured after an additional 2-h incubation period. Additional
experiments were conducted by using 4-cyanophenol (4CP),
which was found to bind rapidly to the diferric protein and was
resistant to oxidation.

Initial screening experiments measuring the oxidation of 4AP
in the presence of 3-phenylene-diamine (MPD) were conducted
at 5.0 μM tetramer [differ formed by preincubation with 2
equivalents Fe(II) for 2 h at room temperature], and the reaction
was initiated by addition of MPD (dissolved in dimethylform-
amide, DMF) to a final concentration of 10 mM, followed by
4AP (in 10% DMF). The final concentration of DMF was kept
below 3% in all experiments. The reaction was then monitored
by UV-visible spectroscopy, using a diode array spectrophotom-
er (13), and monitoring the absorption bands of the aminoo-
oaline dye that are formed (19).

Experiments at variable substrate concentrations were con-
ducted similarly. Because the extinction coefficient of the product
is very sensitive to pH, we measured the product formation at
the isosbestic point (528 nm). The extinction coefficient at this
wavelength (10,700 M$^{-1}$cm$^{-1}$) was determined under single-
turnover conditions in which the substrate was quantitatively

![Scheme 1.](image-url)
with the most open active site gave the greatest binding. Fig. 3 illustrates a binding isotherm for 4CP interacting with diferric G₄-DFtet, which was the tetramer with the highest affinity for this phenol. Analysis of the data provides a dissociation constant of 3.5 mM, and an extinction coefficient of 3,500 M⁻¹cm⁻¹ at 525 nm. Binding was rapid on the second time scale.

Finally, we measured the 4AP oxidase activity of the protein in atmospheric O₂. Screening was conducted at 5 μM protein concentration. Again, a correlation was observed between catalytic activity (Fig. 4A) and the size of the active site cavity. The most active variant G₄-DFtet has the largest active site pocket. This variant showed an ~1,000-fold rate enhancement, relative to the background reaction when the initial rate of the reaction in the presence and absence of the protein were compared (under conditions described in Fig. 4B). The G₄-DFtet catalyzed this reaction for at least 100 turnovers. Changing either of the Gly residues at positions 19 or 15 to Ala gave a protein whose rate was decreased between 2.5- and 5-fold (Fig. 4B). Thus, changes as small as a methyl group had a significant effect on the catalytic activity of the protein.

A measurement of the initial rate of substrate degradation as a function of the concentration of 4AP showed that G₄-DFtet displayed saturation kinetics (Fig. 4C), and nonlinear least squares fitting provided Michaelis–Menton parameters, $K_M = 0.83 \pm 0.06$ mM; $k_{cat} = 1.3 \pm 0.1$ min⁻¹; $k_{cat}/K_M = 1.540$ M⁻¹min⁻¹. The protein catalyzed the oxidation of 4AP for >100 turnovers. The finding that k_{cat} was nearly identical to the rate of oxidation of the diferrous to the diferric species (measured above) suggests that, at saturating 4AP concentrations and ambient O₂ concentrations, the rate-limiting step is air oxidation.
of the different forms of the protein (eqn. 1 in Scheme 1). This oxidation may be limited by a conformational change in the protein, because the rate of oxidation of substrate was the same when O$_2$-saturated buffer was used.

Several tests of the specificity and mechanism of the activity of G$_4$-DFtet suggest that it catalyzes the reaction in the expected manner. The initial rate of oxidation of the substrate was unaffected by the addition of superoxide dismutase (25 units/ml), catalase (25 units/ml), or a spin trap (1 mM 1-hydroxy-2,2,5,5-tetramethyl-3-imidazoline-3-oxide), indicating that the reaction did not require the formation of diffusable radicals or peroxide. Also, 4CP is an efficient inhibitor of the reaction (Fig. 4D). The observed rate of oxidation of 4AP depends on the concentration of inhibitor, and the curve is well fit by a competitive inhibition scheme. The computed value of K_{inh} (3.7 ± 0.3 mM) was within experimental error of the value obtained above by direct titration (3.5 ± 0.3 mM).

The substrate specificity of G$_4$-DFtet is consistent with its proposed mechanism of reaction. The substrate 4-methoxy-aniline, in which the hydroxyl group of 4AP is converted to a methoxy, was not a substrate for the protein. Also, 4-amino-aniline, in which the phenolic hydroxyl is replaced by an amino group, was oxidized at a rate only 2-fold greater than the background reaction (5 μM protein, 0.5 mM substrate).

Assembly of G$_4$-DFtet. Previously, we examined the structural and thermodynamic effects of opening the substrate-access cavity of DF1, by changing a pair of residues from Leu to Ala (15), as well as the helix-breaking residue, Gly (16). The mutations had relatively small (<1 Å) effects on the crystal structure of the protein, although they significantly changed its thermodynamic stability (14). We therefore examined the ability of G$_4$-DFtet, which has four helix-destabilizing Gly residues per helical bun-
dile, to fold into a four-helix bundle. At pH 6.5 and in the absence of metal ions, the individual subunits of G4-DFtet gave CD spectra indicative of largely unfolded peptides. However, when mixed in a 1:1 molar ratio, a complex was formed with a helical content identical to that of DFtet-A-B2. Thus, despite the helix-destabilizing Gly mutations, G4-DFtet retained the ability to fold. To confirm that the G4-DFtet-A and DFtet-B peptides associate with a 1:1 stoichiometry, different molar ratios of the peptides (5 μM total peptide concentration) were mixed, and the ellipticity at 222 nm was evaluated. A minimum (signifying maximal helical content) occurred at a molar ratio of precisely 0.5 (Fig. 5), indicating that the stoichiometry of the peptides was 1:1 (20). The G4-DFtet protein also appeared to be tetrameric at low micromolar concentrations, as assessed by size exclusion chromatography as in ref. 13.

Discussion

In conclusion, this work describes an important step forward toward the ultimate goal of designing highly efficient and selective catalysts from scratch. The protein designed here uses a diiron (II/III) site to catalyze oxidation of a phenol with an electrochemical midpoint potentials near that of the cofactor. Other di-Mn and diiron enzymes similarly shuttle between di-Fe(II) and di-Fe(III) or di-Mn(II) and di-Mn(III). These proteins include manganese catalase (21, 22) and ruberythrin, which is believed to be an NADH-dependent peroxide reductase (23).

Our protein shows many of the key features of biological enzymes in that it has a deeply invaginated active site into which substrates bind, and it displays saturation kinetics. Importantly, the protein is sensitive to changes as small as the size of a single methyl group in the active site residues (1, 7, 8). Although the rate is lower than that observed for many (but not all) highly evolved enzymes, it nevertheless is significantly greater than previous de novo-designed proteins and early catalytic antibodies (8).

Fig. 5. Titration of G4-DFtet-A into DFtet-B measured by the mean residue ellipticity of the solution at 222 nm. The molar ratio of the two peptides was varied, whereas the total concentration was kept constant at 5.0 μM (100 mM NaCl/25 mM Mes, pH 6.5/1 mM EDTA). The lines shown are based on a linear least square fit of the data from 0 to 0.5 and from 0.5 to 1.0 molar ratio.

Although the three-dimensional structure of the backbone and the sequence of the original DFtet was designed by using computational methods, the subsequent introduction of catalytic activity was accomplished without computational methods or by screening a large number of variants. Advanced methods of computational design (24) and/or screening of larger libraries of variants are quite likely to result in improved catalytic performance.

Note Added in Proof. While this paper was in review, Hellinga and coworkers (25) described and used computational methods to predict mutations that introduce triose phosphate isomerase activity into ribose-binding protein, a receptor that normally lacks enzyme activity.