Correction

MEDICAL SCIENCES

The authors wish to note the following: “Due to an error during preparation of the manuscript, the original Fig. 4A in this manuscript showing examples of PIP₃ staining contained two panels (the lox/lox sample at 0 min and the KO at 15 min) from animals that were not a part of this study. A corrected version of Fig. 4A is now shown below containing the correct representative examples of the staining in each genotype at each time point. We have also repeated the quantitative analysis of the staining intensity, derived from the recovered images, and include a new version of Fig. 4B as well. This is not significantly different from the original Fig. 4B and supports the original conclusion that p85 is involved in the regulation of PTEN and PIP₃ turnover. We apologize for any confusion that this mistake may have caused.”

The corrected Fig. 4 and its legend appear below.

![Fig. 4](https://www.pnas.org/cgi/doi/10.1073/pnas.1607478113)

Fig. 4. Enhanced PIP₃ levels in L-Pik3r1KO mice due to decreased PTEN activity. (A) Immunofluorescent staining with a primary anti-PIP₃ antibody (IgM) and an anti-mouse secondary antibody conjugated to Alexa Fluor red and counterstained with DAPI. After an overnight fast, mice were injected with saline (time = 0) or 5 units of insulin for the indicated amount of time. Six mice of each genotype/treatment were fixed via cardiac perfusion of 10% buffered formalin in PBS. (B) Quantification of the immunofluorescence from PIP₃ staining. Representative slides were chosen from each mouse, and the fluorescence intensity was measured and analyzed with VH-H1A5 ANALYZER software (KEYENCE, Osaka, Japan). (C and D) Insulin-stimulated pTyr-associated PI3K activity and PTEN activity and PTEN protein levels in lox/lox or KO animals at the indicated time points after insulin stimulation. *, P < 0.05 vs. lox/lox after 5 min of insulin stimulation.

www.pnas.org/cgi/doi/10.1073/pnas.1607478113