CASE REPORT

Recurrent spontaneous scleral rupture in Marfan’s syndrome

Kiranmaye Turaga, Sirisha Senthil, Subhadra Jalali

SUMMARY

The ocular manifestations of Marfan’s syndrome (MS) range from ectopia lentis, microspherophakia, myopia, glaucoma and retinal detachment. Spontaneous scleral rupture is a rare complication and recurrent scleral perforation is extremely rare. We report a rare case of a 26-year-old male with MS who had sequential recurrent spontaneous scleral rupture which required surgical repair. He suffered from a similar problem 4 years later in both eyes in a different location, with overlying thin cystic blebs and hypotony maculopathy. Surgical repair with preserved scleral donor patch graft and conjunctival autograft in one eye, and conjunctival advancement in the other eye was performed. This helped stabilise the eyes, and resulted in complete visual recovery in both eyes.

BACKGROUND

Marfan’s syndrome (MS) is an inherited disorder of the connective tissue characterised by musculoskeletal abnormalities, cardiovascular disease and ocular abnormalities. The ocular manifestations of MS include ectopia lentis, microspherophakia, myopia, glaucoma, retinal tears and retinal detachment. The sclera of patients with MS is unusually thin. Scleral thinning and perforation may occur after trauma or surgery or due to chronic increase in intraocular pressure (IOP). Spontaneous perforation due to progressive scleral thinning, although rare, can occur in these patients’ eyes. Recurrent bilateral spontaneous scleral rupture in the absence of high IOP is even more rare, and is not reported so far. We report a case of bilateral recurrent spontaneous scleral rupture with hypotony maculopathy in a young man with no glaucoma, which required surgical repair. Our case highlights a rare and sight-threatening ocular complication of MS, and an unusual scleral phenotype.

CASE PRESENTATION

A 14-year-old boy presented to us, in June 2004, with symptoms of decreased vision in the left eye (LE) since 1 month. He had no history of trauma or previous ocular surgery. His visual acuity was 20/60 in both eyes. Anterior segment examination showed deep and quiet pupils, irregular and myopic of −19D. The IOP was 8 mm Hg in the right eye (RE) and 2 mm Hg in the LE. Anterior segment examination showed clear cornea, shallow anterior chamber, corectopia, microspherophakia, inferiorly subluxated clear lens, superior scleral thinning with underlying uveal show noted at 10–11 o’clock in the RE and a scleral defect with a bleb from 9 to 12 o’clock in the LE. Fundus evaluation was normal in both eyes. General examination showed features suggestive of MS such as long thin face, high arched palate, tall stature with long extremities and arm span greater than the total height. His cardiovascular examination revealed mitral valve prolapse with mild regurgitation. Surgical repair of the scleral defect in the LE was performed with preserved donor scleral patch graft under general anaesthesia (GA). His postoperative course was uneventful with IOP of 12 and 10 mm Hg in the RE and LE, respectively. He had stable visual acuity and was under our regular follow-up care.

Four years later, in February 2008, he presented to the emergency clinic with symptoms of sudden decrease in vision, pain and redness in the LE of 2 days duration. His best corrected visual acuity (BCVA) was 20/60 in RE and 20/100 in LE. The IOP was 8 mm Hg in the RE and 6 mm Hg in the LE. LE examination revealed dislocation of crystalline lens into the anterior chamber. An emergency parsplana lensectomy (PPL) and anterior vitrectomy was performed under GA, and his postoperative course was uneventful. His visual acuity improved to 20/60 with aphakic correction in the LE. The IOP was 12 mm Hg in both eyes.

Six weeks after this episode, he presented in March 2008 with sudden decrease in vision in the RE. BCVA in the RE was finger counting at 2 m and IOP was unrecordable. On examination, anterior chamber was very shallow with subluxated lens, and a scleral defect was noted at 10–12 o’clock close to the limbus in the area of previous thinning, with overlying conjunctival bleb. Emergency surgical repair with preserved donor scleral patch graft and PPL were performed in the RE under GA. He had an uneventful postoperative period, and was visually rehabilitated with soft contact lens in both the eyes.

Seven years after his first presentation, he presented with sudden decreased vision in his LE. His visual acuity was 20/40 in RE and 20/400 in LE. The conjunctiva showed chemosis with cystic elevation noted in the superior conjunctiva, nasally and temporally in both eyes. Seidel’s test was negative, cornea was clear in the RE and showed descemet’s folds in the LE, anterior chambers were deep and quiet, pupils were irregular and there was patent surgical iridectomy in the RE. Both eyes were aphakic (figure 1). IOP was 6 mm Hg in the RE and 0 mm Hg in the LE. Fundus examination of RE was normal, and LE showed attached retina, disc oedema, dilated tortuous vessels and radial choroidal folds with hypotony maculopathy (figure 2).
inferior bulbar conjunctiva and was secured with multiple inter-

was then covered with a free conjunctival autograft from the

thin and abnormal, but we were able to secure the graft. This

with 10-0 nylon sutures to the adjacent sclera which was also

USA) was used and then scleral patch graft edges were sutured

2. Retinal or choroidal detachment with hypotony is a possibil-

ity; this, however, was ruled out with ultrasound B-scan.

The central corneal thickness was 540 μm in the RE and

533 μm in the LE.

DIFFERENTIAL DIAGNOSIS
1. Glaucoma filtration surgery is one of the differential diagno-
sis for cystic blebs. However, our patient did not have any

history of previous intraocular surgery, and there were no

other clinical signs suggestive of previous trabeculectomy.

2. Retinal or choroidal detachment with hypotony is a possibil-

ity; this, however, was ruled out with ultrasound B-scan.

TREATMENT
He was advised to undergo scleral patch graft with conjunctival

autograft in LE under GA. The thin cystic conjunctiva was

excised and the underlying scleral defect was repaired.

Intraoperatively, the sclera was noted to be very thin with under-

lying uveal show. The sclera was frayed with abnormal scleral

architecture, not just at the area of the rupture but also in the

adjacent area. The scleral defect was more like a full thickness

c scleral hole (figure 3). There was no scleral tear noted. The

initial patch was in a place adjacent to the new rupture.

The abnormal and thin cystic conjunctiva was excised, and the

scleral defect was closed with preserved donor scleral patch

graft; fibrin glue (Tissel, Baxter, Westlake Village, California,

USA) was used and then scleral patch graft edges were sutured

with 10-0 nylon sutures to the adjacent sclera which was also

thin and abnormal, but we were able to secure the graft. This

was then covered with a free conjunctival autograft from the

inferior bulbar conjunctiva and was secured with multiple inter-

rupted 10-0 nylon sutures.

OUTCOME AND FOLLOW-UP
At the 1-week follow-up, vision was 20/40 in the RE and

20/160 in the LE. The anterior segment examination of LE

showed oedematous lids, conjunctiva showed chemosis, patch

graft was in place and the sutures were intact, cornea showed

stromal oedema and descemet’s folds, anterior chamber was

deep with 1+ cells, and the pupil was irregular and fixed. Both

eyes were aphakic. IOP was 5 mm Hg in the RE and 6 mm Hg

in the LE. He was advised to use topical steroids in tapering
doses, topical antibiotics and cycloplegics in the LE. Fundus

examination revealed resolving hypotony maculopathy in the

LE. One month later, he presented with sudden decrease in

vision in his RE and unrecordable IOP. There was a scleral

defect noted superonasally, with thin cystic bleb and negative

Seidel’s test. He underwent surgical repair with scleral path

graft and conjunctival advancement. Vision was 20/25 with

+12.00 Dsph/+2.00 Dcyl @ 180° in RE and 20/60 with +12.00

Dsph/~2.00 Dcyl @ 160° in LE. Near vision was N6 in RE and

N24 in LE with addition of +3.25 Dsph in both eyes. The IOP

recorded was 8 and 6 mm Hg in the RE and LE, respectively.

Vision and IOP have remained stable for 3 years, with well-

placed patch grafts and healthy conjunctiva (figure 4).

The scleral tissue was biopsied, and the conjunctival and

scleral tissues were sent for histopathology. The histopathology

of the scleral tissue showed disorganised collagen with focal

hyalinisation suggesting either a connective tissue disorder or

chronic inflammation. In the absence of inflammation in our

case, the histopathology most probably represents a connective

tissue disorder.

DISCUSSION
MS is a hereditary systemic connective tissue disorder charac-
terised by musculoskeletal, cardiovascular and ocular abnormal-

ities.1 MS is caused by mutation of the FBN1 gene on

chromosome 15, which encodes fibrillin1; it can also be caused

by inactivation of mutation in TGF-b receptor 2 in 20% of the

cases.1 Transmission is autosomal dominant with high pene-

trance, and ~25–30% of cases are sporadic.1

The physical features of patients with MS include musculo-

skeletal defects such as tall stature with long extremities, arm

span greater than their total height, disproportionately long and

thin fingers (arachnodactyly). Prognathism, high arched palate,

kyphoscoliosis, pectus excavatum or pectus carinatum are

common.6 A generalised muscular hypotony, joint laxity and

joint contracture may be seen.6 Cardiovascular manifestations of

MS include aortic and pulmonary artery dilation, as well as

mitral and tricuspid valve prolapse with or without regurgitation.

FBN1 is a main component of the extracellular microfibrils

found in a wide range of tissues. It provides stretch and elasti-
city to connective tissues. Fibrillin, a glycoprotein, is a major

structural component of the microfibrils that surround the

elastin core in the extracellular matrix of the sclera.1 These help

maintain the rigidity, strength and elasticity of the scleral tissue.

The gene defect causes disordered and decreased incorporation

of fibrillin into the connective tissue matrix.1

Ocular structures rich in fibrillin include cornea (at the level

of epithelial basement membrane), the suspensory zonules of

the lens, the lens capsule and the sclera.3 Mechanical stretching

of the sclera containing abnormal fibrillin molecule may result

in axial myopia and progressive scleral thinning. The sclera of

patients with MS is very thin, and predisposes to stretching and

perforation. The aqueous leak from the scleral defect could lead
to bleb formation and hypotony. Scleral perforation following

trabeculectomy and scleral buckling procedure has been

reported in MS.2 3 However, bilateral spontaneous scleral defect

is rare and recurrent scleral perforation is even rare.
There have been two case reports of spontaneous scleral perforation published. In the first case report, there were two cases, a 11-year-old girl and 23-year-old male who presented with progressive myopia and decreased visual acuity. The IOP recorded were 11 and 3 mm Hg in RE and LE in case one, and in the second case, 9 mm Hg in both the eyes. There was scleral thinning noted in the superonasal quadrants with blebs in both eyes of the two patients, with upward subluxation of the spherophakic lens. Lensectomy and vitrectomy with iris-fixated intraocular lens implantation was done in both eyes. The scleral defects were not repaired and in one eye with IOP of 3 mm Hg, the IOP increased to 10 mm Hg after lensectomy.

In another similar case, a 18-year-old man with MS presented with bilateral red eye and tearing for 1 week. IOP in RE and LE was 9 and 8 mm Hg, respectively. In both eyes there was upward subluxation of spherophakic lens with shallow AC. There were areas of scleral thinning in the superior quadrants of both eyes, with exposed uveal tissue covered by a layer of thin conjunctival epithelium with no leak. Surgical repair with scleral patch graft was done in both eyes. Five months after scleral patch graft, vision improved in both the eyes with IOP of 13 and 10 mm Hg in RE and LE, respectively.

In our patient, the lens subluxation was inferior, which is unusual in a MS. The scleral defects were superonasal, as in all the other cases reported so far. The recurrence in the scleral thinning was adjacent to the previously treated area and not in the area of pars plana ports used for lensectomy. Also our patient presented with severe hypotony with maculopathy and had to be treated immediately. High index of suspicion is needed to detect ooze through thin sclera; treatment should be done in time and appropriately to avoid serious hypotony-related complications.

Our case also highlights that these patients need lifelong follow-up; they should be educated about the risk of scleral thinning and perforation apart from other ocular problems, and the need to report immediately in case of sudden decrease in vision. The patients with suspected sclera thinning should also be advised to avoid contact sports, which could increase the risk of scleral rupture. Prompt surgical repair with preserved donor sclera patch graft and appropriate conjunctival closure technique can preserve the vision and the integrity of the globe.

Learning points

- Recurrent spontaneous scleral rupture is an extremely rare presentation of Marfan’s syndrome, and most often occurs in the superonasal quadrant.
- Marfan’s patients need lifelong follow-up, and should be made aware of the risk of scleral perforation and hypotony.
- Severe hyotony with maculopathy can pose a threat to vision in these cases, and prompt surgical repair can preserve the vision and the integrity of the eye.
- Recurrences can occur in the adjacent areas or in a new location, and a high index of suspicion is needed to detect this complication early.

Contributors TK, SS and SJ have contributed to the drafting of the article, and its critical revision for important intellectual content. All the authors have contributed to the conception, design, acquisition and interpretation of the data.

Competing interests None declared.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

Unusual association of diseases/symptoms

Copyright 2016 BMJ Publishing Group. All rights reserved. For permission to reuse any of this content visit http://group.bmj.com/group/rights-licensing/permissions.
BMJ Case Report Fellows may re-use this article for personal use and teaching without any further permission.

Become a Fellow of BMJ Case Reports today and you can:
► Submit as many cases as you like
► Enjoy fast sympathetic peer review and rapid publication of accepted articles
► Access all the published articles
► Re-use any of the published material for personal use and teaching without further permission

For information on Institutional Fellowships contact consortiasales@bmjgroup.com
Visit casereports.bmj.com for more articles like this and to become a Fellow