Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks – Implications for nuclear pore permeability

Nico B. Eisele,† Aksana A. Labokha,‡ Steffen Frey,‡ Dirk Görlich,‡ and Ralf P. Richter*‡§

1Biosurfaces Unit, CIC biomaGUNE, San Sebastian, Spain; 2Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; 3I2BM, Department of Molecular Chemistry, J. Fourier University, Grenoble Cedex 9, France; and 4Max Planck Institute for Intelligent Systems, Stuttgart, Germany

ABSTRACT Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few \(k_B T \) per chain, and contribute important information to understand the mechanism of size-selective transport.

INTRODUCTION

Bulk macromolecular transport between the cytosol and the nucleus of eukaryotic cells is gated through nuclear pore complexes (NPCs) (1–6), large protein assemblies that perforate the nuclear envelope. To form an NPC, several types of nucleoporin proteins self-assemble in multiple copies into a ring-like structure with a central channel of 30 to 50 nm in diameter (7,8). Specialized nucleoporin domains that are natively unfolded and rich in phenylalanine-glycine dipeptides (FG domains) are grafted at high density to the channel walls (9) and constitute a selective permeability barrier: molecules smaller than 5 nm in diameter (10) can diffuse efficiently through the channel, whereas larger molecules are delayed or blocked, unless they are bound to nuclear transport receptors (NTRs) that bind to FG motifs as a prerequisite for facilitated NPC passage (1–4,11).

The physical mechanism behind transport selectivity is poorly understood. Several models have been proposed (12–16). They share the idea that the permeability barrier of NPCs arises from the supramolecular assembly of FG domains. The structure of the FG domain meshwork inside the NPC remains elusive, presumably because it is highly dynamic and exhibits a low degree of order. There is, however, increasing evidence that FG domains can interact attractively with each other (17–20), and that these interactions are essential for the formation of a functional permeability barrier (17,21).

We hypothesize that the combination of flexible chains, their confinement through grafting, and the degree to which they interact attractively with each other, henceforward also called cohesiveness, determines the functionality of the permeability barrier. Cohesive interactions are heterogeneously distributed within FG domain chains, i.e., one can find cohesive elements, made of FG, FxFG, or GLFG motives but also other amino acids, as well as repulsive ones, such as stretches of charged residues (19,22–25). The balance of these interactions, together with the confinement of the chains, will ultimately determine the organization and dynamics of the nanoscale FG domain meshwork in a way that is crucially important for function, yet not well understood.

To explore experimentally how the balance of interactions affects the morphology and dynamics of FG domain assemblies, we exploited a recently developed nanoscale model system of the permeability barrier: planar films of FG domains that are end-grafted to supported lipid bilayers (SLBs) (Fig. 1 a) (26,27). The films reproduce the native permeability barrier in the following aspects: the FG domains are end-grafted, the film thickness is comparable with the dimensions of the nuclear pore, and the FG repeat densities are comparable. Compared with the native pore or reconstituted systems that reproduce the pore-like topology (21,28), the choice of a planar geometry provides excellent control on film formation and greatly facilitates a detailed and quantitative characterization of the film morphology and dynamics.

To rationalize the behavior of our films, we took advantage of classical theoretical concepts of polymer physics. As a first approximation, we describe the physicochemical ensemble properties of FG domain assemblies by their average degree of cohesive interactions, without considering the (still unknown) exact distribution of cohesive elements along the chain. Fig. 1 b schematically shows theoretical predictions about the morphology of end-grafted and

Submitted May 8, 2013, and accepted for publication September 4, 2013.

*Correspondence: rrichter@cicbiomagune.es

Editor: Gijsje Koenderink

© 2013 by the Biophysical Society

0006-3495/13/10/1860/11 $2.00

http://dx.doi.org/10.1016/j.bpj.2013.09.006
Cohesiveness tunes FG domain meshworks

Flexible, regular polymers of varying cohesiveness (29,30). For regular polymers, cohesiveness receives a precise physical meaning. It is identical to the so-called Flory interaction parameter χ, which is determined by the relative strength of (inter- and intramolecular) interactions between polymer segments, polymer-solvent and solvent-solvent interactions. Irrespective of the magnitude of χ, a sufficiently high grafting density entails the formation of a so-called brush, in which the film is laterally homogeneous and its chains are partially stretched away from the grafting surface. With increasing χ, the stretching decreases and an increasingly dense film is expected to form. For values of χ well beyond 0.5, lateral phase separation occurs at intermediate grafting densities, driven by the maximization of interchain interactions. Depending on the grafting density and χ, different morphologies can arise (30,31): a continuous film perforated by pores, an array of isolated clusters of several polymer chains, or an array of globules of individual chains. Flexible chains in a brush do also explore the lateral dimensions, implying that they show some degree of interpenetration. This aspect is frequently neglected when sketching polymer brushes (e.g., 16,32) yet it might be functionally important. On a local scale, the film forms a meshwork of interpenetrating chains, and the so-called correlation length ξ is a measure for the mean mesh size (33–35). The mesh size limits the permeability of particles that do not attractively interact with the polymers (34).

In this paper, we provide evidence that FG domains, despite their heterogeneous primary structure, faithfully reproduce the basic theoretical predictions for regular, flexible polymers. To this end, we compared different types of FG domains, including mutants. The FG domains were selected for their difference in cohesiveness, based on their propensity to form macroscopic hydrogels, where a hydrogel is defined as a nonfluid polymer network that is expanded throughout its whole volume by aqueous solvent (36). “Nup98-glyco” is an O-GlcNAc-modified, 485 amino acid long FG domain from *Xenopus tropicalis* Nup98. This domain forms tight macroscopic hydrogels and is essential for forming a selective permeability barrier in NPCs reconstituted from *Xenopus* egg extracts (21,25). Nsp1-WT, a 600 amino acid FG domain from *Saccharomyces cerevisiae*, consists of a highly cohesive N-terminal domain and a less cohesive C-terminal domain (19,32) but still forms tight macroscopic hydrogels (17,18). Nsp1-FILV→S, a mutant Nsp1 FG domain in which all hydrophobic amino acids were exchanged by the hydrophilic serine, does not form macroscopic hydrogels (19).

In particular, we analyze to what extent ultrathin films of the selected FG domain constructs form hydrogels. In the nucleocytoplasmic transport field, the scenario of end-grafted, noncohesive chains is commonly, though imprecisely, termed a “brush-like, entropic barrier” and opposed to a gel (16,37). Based on the above-given definitions, it becomes clear that polymer brushes and hydrogels are not mutually exclusive states: the chains in a polymer brush (i.e., a dense arrangement of end-grafted polymer chains) may repel each other, leading to simple interpenetration of chains, or attract each other at various degrees, leading to the formation of a (transiently or stably) cross-linked film; if the cross-links are stable enough to prevent polymer flow, a hydrogel would be formed.

We demonstrate that the morphologies outlined in Fig. 1b can be generated if the cohesiveness is adjusted appropriately. We show that hydrogels on the one hand and brushes of interpenetrating, noncohesive chains on the other are not two distinct states but rather that they are extremes of a continuous spectrum of states that can be covered by tuning cohesiveness. We argue that the self-organization phenomena that we observe on planar surfaces are relevant for the NPC topology, and we discuss the broad implications for the assembly and function of the permeability barrier.
MATERIALS AND METHODS

Proteins and buffer

We used the following FG domains: Nsp1-WT (amino acids 2 to 601; 62.1 kDa), Nsp1-F→S (58.8 kDa), Nsp1-FLIV→S (57.9 kDa), and Nup98-glyco (amino acids 1 to 485, with ~30 O-GlcNAc modified Ser and Thr residues per chain (25); 55.3 kDa) without His-tag; Nsp1-WT (64.1 kDa), Nsp1-F→S (60.8 kDa), and Nsp1-FLIV→S (60.4 kDa) with C-terminal His10-tag; and Nup98-glyco (58.8 kDa) with N-terminal His6-tag. FG domains with and without a His-tag were purified as described earlier (25,26) (see Fig. S1 in the Supporting Material). To obtain fluorescently labeled FG domains, the N-terminal cysteine of the Nsp1 FG domain constructs and the C-terminal cysteine of Nup98-glyco were reacted with Atto488-maleimide and purified by high-performance liquid chromatography as described previously (18). All FG domains were stored at a concentration of 10 mg/ml in 50 mM Tris pH 8 and 6 M guanidine hydrochloride (GuHCl) at ~80°C. Before use, the FG domains were diluted in working buffer (10 mM Hepes, pH 7.4, 150 mM NaCl) to desired concentrations. The dilutions were chosen so that the residual concentration of GuHCl in the final solution was below 75 mM.

Surfaces

Silica-coated for quartz crystal microbalance with dissipation monitoring (QCM-D) measurements sensors (QSX303, Biolin Scientific, Västra Frölunda, Sweden) and silicon wafers with a native oxide layer of less than 2 nm thickness (University Wafers, South Boston, MA) were cleaned by immersion in a 2% sodium dodecyl sulfate solution for 30 min, rinsed with ultrapure water, blow-dried with nitrogen, and exposed to UV/ozone (30 min) before use. Fro¨lunda, Sweden) and silicon wafers with a native oxide layer of less than 2 nm thickness (University Wafers, South Boston, MA) were cleaned by immersion in a 2% sodium dodecyl sulfate solution for 30 min, rinsed with ultrapure water, blow-dried with nitrogen, and exposed to UV/ozone (30 min) before use.

Preparation of lipids and lipid vesicles

Lyophilized dioleoylphosphatidylcholine (DOPC) was purchased from Avanti Polar Lipids (Alabaster, AL). Lipid analogs with chelator headgroups comprising either two or three nitrilotriacetic acid moieties (bis-NTA or tris-NTA, respectively (38)) were kindly provided by J. Piehler (University of Osnabrück, Germany). Lipid vesicles were prepared as described earlier (38,39). Before use, vesicle suspensions were diluted to 50 μg/ml in a working buffer containing 10 mM NiCl2.

QCM-D

QCM-D measures changes in resonance frequency, Δf, and dissipation, ΔD, of a sensor crystal upon interaction of (soft) matter with its surface. The QCM-D response is sensitive to the mass (including hydrodynamically coupled water) and the mechanical properties of the surface-bound layer (40). To a first approximation, a decrease in Δf indicates a mass increase, whereas high (low) values of ΔD indicate a soft (rigid) film. Adsorption processes were monitored in situ with subsecond time resolution. QCM-D measurements were performed with a Q-Sense E4 system (Biolin Scientific, Västra Frölunda, Sweden). The system was operated in flow mode with a flow rate of typically 20 μl/min using a syringe pump (KD Scientific, Holliston, MA). The working temperature was 23°C. Δf and ΔD were measured at the fundamental (i = 1) and typically 6 overtones (i = 3, 5, ... 13), corresponding to resonance frequencies of f0 ≈ 5, 15 ... 65 MHz. Changes in dissipation and normalized frequencies, ΔD/Δf, for i = 5 are presented. The film thickness hQCM was determined by fitting of QCM-D data to a viscoelastic model, as described in Eisele et al. (27).

Spectroscopic ellipsometry (SE)

Spectroscopic ellipsometry (M2000V, Woollam, NE) on silicon wafers was performed using an open fluid cell with continuously stirred sample solution, and data were fitted with the software CompleteEASE (Woollam, NE) using a model of multiple optically homogeneous layers, as previously described in other studies (26,41). The FG domain film was treated as a transparent Cauchy medium with optical thickness hSE and wavelength-dependent refractive index n. The FG domain grafting density was determined through de Fejter’s equation (42), \(I = h_{SE} \Delta n / (M_w \times dn/dc) \), where \(M_w \) is the molecular weight, and \(\Delta n \) is the (approximately wavelength-independent) difference in refractive index between the film and buffer solution. We used a refractive index increment of dn/dc = 0.18 cm²/g. Error bars for hSE correspond to 68% confidence intervals, calculated analogously to the error bars for \(h_{QCM-D} \), see Eisele et al. (27) for details.

Atomic force microscopy (AFM)

Imaging and nainoindentation measurements were performed on a NanoWizard II atomic force microscope (AFM; JPK, Berlin, Germany) using oxide-sharpened Si3N4 probes (NP-S, Veeco, CA) with a nominal cantilever spring constant of 0.06 N/m. The real spring constant, determined through the thermal noise method, was 0.10 N/m. Sample films were prepared on silicon wafers, following the same incubation steps as previously described by SE (Figs. 2 and 53), although in still solution. Complementary SE measurements confirmed that stirring does not significantly affect the final adsorbed amounts for the incubation times used (1 h or more).

AFM images were acquired in tapping mode in solution. The drive frequency was typically between 10 and 20 kHz, and the free amplitude...
of the cantilever was set to ~30 nm. To ensure a soft approach to the sample, the setpoint amplitude was decreased manually, in steps of a few Å, until the surface could be tracked. Scan speeds of 2 to 20 μm/s were employed.

Nanoindentation assays were performed in working buffer solution. Deflection versus displacement curves were typically acquired at approach speeds of 500 nm/s and maximal loads of 1 nN, and converted into force versus distance curves with JPK Data Processing software (JPK, Berlin, Germany). We compared only force curves that were acquired with the same tip, to minimize the effect that variations in the shape of the AFM probe may have on indentation. Reference force curves were acquired on a control surface—an SLB that lacked FG domain coating—before and after indentation of each FG domain film. Only indentation series that reproducibly showed a small interaction distance (≤ 5 nm) on bare SLBs were accepted. A force curve was considered representative, when it could be reproduced upon repeated indentation at the same spot and at different spots on the same sample. For further analysis, and display in Fig. 3 a, 6 to 12 curves were taken with the same AFM probe on the same or different spots on a given FG domain film and averaged. To quantify the onset of repulsive forces, data around the estimated contact point were fitted with a polynomial; the onset was then taken as the distance at which the force exceeded baseline level by 10 pN. The film thickness \(h_{\text{AFM}} \) was estimated from the distance between the onset of repulsive forces and the hard-wall compression limit.

Fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching (FRAP) measurements were performed with a confocal laser scanning microscope (LSM 510, Zeiss, Germany) using an argon laser (λ = 488 nm), a plan-apochromat 63 × 1.4 oil immersion objective, and a completely opened pinhole (1 mm diameter). FG domain films were assembled on glass cover slips from protein solutions containing ~1 mol-% Atto488-labeled FG domains. The size of the area was set to 118 × 118 μm². After acquiring several prebleach images of the fluorescently labeled FG domain monolayer, a circular region with a radius of 10 μm in the center of the imaged area was bleached through brief exposure (3 to 8 s) to high laser intensity. More than 60% bleaching in the center of the exposed region was achieved. Fluorescence recovery due to lateral diffusion of bleached (unbleached) FG domains out of (into) the bleached region was then monitored through acquisition of postbleach images over a period of up to 4 h.

RESULTS

FG domain film assembly and its kinetics

Specific and stable end-grafting of FG domains with different cohesiveness (Nup98-glyco, Nsp1-WT, and Nsp1-FILV→S) through terminal His-tags to SLBs doped with Ni²⁺-NTA functionalized lipids (38) was confirmed by quartz crystal microbalance with dissipation monitoring (QCM-D; Figs. S2–3). Grafting density and film formation kinetics were quantified by spectroscopic ellipsometry (SE; Fig. 2 a). The different FG domains initially adsorbed with similar rates, consistent with mass-transport-limited binding. Clearly, all FG domains can bind rapidly to a sparsely covered SLB, i.e., binding of the His-tag to the Ni²⁺-NTA group is not rate limiting. The adsorption rates decreased with increasing surface density, and the decrease in rate differed drastically between FG domains: it was very pronounced for Nsp1-FILV→S, less pronounced for Nsp1-WT, and barely noticeable for Nup98-glyco up to \(\Gamma = 10 \) pmol/cm². The grafting densities of both Nsp1 constructs remained well below this density during the first hour of incubation, indicating that availability of Ni²⁺-NTA anchor groups did not limit binding of Nsp1 constructs within this time.

A strongly coverage-dependent decrease in the binding rate, as observed for the Nsp1-FILV→S mutant, is consistent with theoretical predictions for the formation of brushes from polymer chains that repel each other (χ < 0.5): the brush-forming polymers constitute an entropic barrier (Fig. 2 b) against the access of free polymers from solution to the SLB, entailing a coverage-dependent reduction in the binding rate (43). Cohesive interactions would be predicted to facilitate entry and partitioning of polymers into the surface-confined film, and we propose that this is the reason why Nsp1-WT and Nup98-glyco continue to bind rapidly at surface coverages that are inhibitory for Nsp1-FILV→S. The entropic penalty associated with the partitioning of polymers from the solution into the film increases with coverage, and differences in the cohesiveness would readily explain why Nup98-glyco retained a high binding rate longer than Nsp1-WT.

Thickness, concentration, and mechanical properties of FG domain meshworks

To test how cohesive interactions affect FG domain film thickness, we prepared and compared different FG domain films at grafting densities close to the maximal coverage.
attainable with Nsp1-FILV→S (i.e. 5.1 ± 0.3 pmol/cm², or one molecule per 31 ± 2 nm²; Fig. S4). These values compare well with the estimated average surface area per FG domain chain in a yeast NPC that would be 24 to 32 nm², assuming a channel of 35 to 40 nm in diameter and 30 to 35 nm in length (7), and ~136 FG domains per channel (9,44).

AFM indentation assays with a nanosized probe (Fig. 3) revealed film thicknesses in the range of a few 10 nm, consistent with the formation of a monolayer of weakly extended polypeptide chains. The Nsp1-FILV→S mutant formed the thickest films (35 ± 5 nm), Nsp1-WT formed a film of intermediate thickness (25 ± 8 nm), and Nup98-glyco formed the thinnest film (17 ± 3 nm). Thickness values determined from QCM-D and SE data of films prepared under identical conditions showed the same trend (Fig. 3 b), corroborating the AFM data. From the thickness determined by AFM and the grafting density, we can estimate the concentration of FG domains in the films to be 85 ± 13 mg/ml for Nsp1-FILV→S, 146 ± 47 mg/ml for Nsp1-WT, and 191 ± 34 mg/ml for Nup98-glyco. Clearly, increasing cohesive interactions promotes the formation of more compact films with higher FG domain concentration.

A polymer meshwork should become stiffer when increasing the concentration or interaction strength. For thin, homogeneous films, the elastic compliance (or inverse of stiffness), J', can be estimated directly from QCM-D data (27).45. Fig. 4 displays the evolution of the ratio of QCM-D dissipation and frequency shifts, ΔD/Δf, which is proportional to J'/ρ, where ρ is the film density, during the process of film formation. All curves exhibited a monotonous decrease in ΔD/Δf with increasing absolute frequency shifts (or surface coverage), consistent with a gradual increase in protein concentration and perhaps even attractive interactions within the films (27). The magnitudes of the ΔD/Δf values varied significantly between FG domain types, indicating that film stiffness indeed depends on the quality of the respective FG domain. Nup98-glyco and Nsp1-FILV→S formed the most rigid and soft films, respectively, whereas Nsp1-WT formed films of intermediate rigidity, consistent with the trends observed for film compaction and film formation kinetics. Interestingly, we could not find any difference in stiffness between Nsp1-FILV→S and another Nsp1 construct in which exclusively phenylalanines were mutated to serines (Nsp1-F→S). This indicates that F is essential for formation of the cross-links that make Nsp1-WT stiffer than its mutant forms, whereas I, L, and V, which together contribute only 19% of the total content in hydrophobic amino acids of the Nsp1 FG domain, only play a subordinate role.

Lateral homogeneity of and chain mobility in FG domain meshworks

To test how the nature of the FG domains affects the supramolecular organization along the surface plane, we imaged FG domain films at selected grafting densities by AFM (Fig. 5). Nup98-glyco films at grafting densities of 12 and 9 pmol/cm² (Fig. 5 a–b) appeared overall homogeneous. Small-scale surface corrugations with a characteristic lateral length scale of ~20 nm could be clearly imaged, whereas any feature of smaller size eluded imaging. When decreasing the surface density to 5.4 pmol/cm² (Fig. 5 c), depressions appeared. The depressions were shallow yet their diameter of typically ~100 nm was already several times wider than the transport channel of NPCs. When further decreasing the grafting density, the film became very heterogeneous, showing holes of several 100 nm in diameter (Fig. 5 d).

We believe that these holes traverse the film completely, even though the apparent depth of the holes in Fig. 5 d (~5 nm) is likely to be smaller than the unperturbed thickness of the surrounding film. Most likely, the discrepancy arises because the FG domain film is transiently compressed upon encounter with the AFM probe, even under the gentlest imaging conditions. Indeed, we observed the measured depth of the holes to sensitively depend on the imaging conditions, i.e., a subtle decrease in the AFM cantilever’s setpoint amplitude, which is a measure of the pressure that the AFM probe exerts on the film, entailed a significant further reduction (by a few nm) in apparent depth (data not shown).

Despite the films’ compliance, the lateral surface features of all Nup98-glyco films varied only little, if at all, upon repeated imaging for extended times (up to 1 h). Measurements by fluorescence recovery after photobleaching...
(FRAP; Fig. 6\textit{a}) confirmed that Nup98-glyco domains have no detectable lateral mobility, despite being anchored to laterally mobile NTA-lipids in a fluid-phase SLB. The stability of film morphology is direct evidence that interchain interactions within end-grafted Nup98-glyco assemblies are sufficiently strong to drive self-organization into temporally stable (i.e., nonfluid) and rather dense hydrogel phases at the nm scale. If the grafting density is too low, the hydrogel phase is disrupted. In contrast, if the density is sufficiently high, a laterally homogeneous hydrogel can form.

Nsp1-WT films, formed at 6.6 pmol/cm2, were laterally homogeneous but exhibited some apparent roughness (Fig. 5\textit{e}). In contrast to Nup98-glyco, the surface features varied strongly upon repeated imaging, indicating that the grafted Nsp1-WT molecules retain sufficient mobility to reorganize rapidly. Images of Nsp1-WT and Nsp1-FILV→S films at 5.5 pmol/cm2 appeared so smooth that they were indistinguishable from images of a pure SLB (Fig. 5\textit{f}), i.e., they were too soft to be imaged and readily penetrated by the AFM tip. Complementary FRAP
results for h (Fig. 3 b) correspond to free energies of 14 ± 5, 8 ± 5 and 4 ± 2 k_BT, respectively, for Nsp1-FILV→S, Nsp1-WT and Nup98-glyco. The value for Nup98-glyco should be considered an upper bound, because this FG domain forms only a weak brush, i.e., at the borderline to a disrupted film, under the employed surface coverage (Fig. 5 c).

Provided that binding is limited by the FG domain film, the free energy gains can also be related to binding rates (Fig. 2 a) through Arrhenius’ law, dΓ/dt = cA exp(Ea/k_BT) (43), where c is the FG domain concentration in the bulk solution, and Ea is the activation energy for binding (Fig. 2 b). The prefactor A depends only weakly on the FG domain type, and from the differences in Ea, we estimate energy gains of 3 and 7 k_BT for Nsp1-WT and Nup98-glyco, respectively, compared with Nsp1-FILV→S, at Ε = 5 pmol/cm² (Fig. 7). The value for Nup98-glyco is a lower limit, because binding of this FG domain remained mass transport–limited until higher grafting densities. Both approaches for the estimation of energy gains produce similar results. They reveal that the average free energy cost per amino acid, or per FG unit of typically 15 to 20 amino acids, for film compaction is rather small, typically on the order of 0.01, or 0.1 k_BT, respectively.

DISCUSSION

We used monolayers of selected types of FG domains to study the effect of cohesive interactions on the morphology of FG domain assemblies at the nanoscale. The monolayers mimic the conditions in the native NPC as FG domains are end-grafted to a surface at comparable densities. Under these conditions, cohesive interactions drastically affected various film properties, i.e., formation kinetics, morphology (thickness and lateral homogeneity), chain mobility, and mechanical properties. Importantly, the observed morphologies, and their dependence on cohesiveness, are in good qualitative agreement with theoretical predictions for
Cohesiveness tunes FG domain meshworks

Impact of cohesive interactions on the morphology and implications for the size selectivity of the permeability barrier

Applying these theoretical concepts to the topology of the NPC transport channel—a cylinder that is short, i.e., the diameter roughly equals the length—and considering that the grafting density in our planar systems is comparable with that in the native NPC, different morphologies would be expected as a function of cohesiveness between polymer chains (Fig. 8). Without cohesive interactions, a continuous polymer meshwork would occupy the entire channel and pervade a rather large space around the channel entrances (Fig. 8 a). Balanced interchain interactions induce compaction into a denser meshwork (Fig. 8 b). If the cohesive interactions become too strong, i.e., at free energy gains well beyond a few $k_B T$/per chain, the continuity of the meshwork is disrupted. Polymer chains may form a collapsed phase near the wall (Fig. 8 c), or become partially stretched close to the wall and collapsed at the channel’s center (31,47,48).

The performance of these morphologies as permeability barriers would differ drastically. Size selectivity would be almost completely lost in the scenario shown in Fig. 8 c, because even rather large molecules can rapidly diffuse through spaces that are not occupied by the FG domain meshwork. The assemblies sketched in Fig. 8 a–b should both feature size-selective permeability, albeit to a different extent (27,33,34). To a first approximation, both assemblies can be characterized by an average mesh size. Molecules smaller than the mesh can readily permeate the FG domain assembly, whereas the diffusion of larger molecules is slowed down (33,34). In meshworks of flexible polymers, the mesh size is predicted to decrease with polymer concentration with a power between 3/4 and 1, depending on χ (33–35). Consequently, the roughly twofold increase in FG domain concentration that we observed between the least cohesive Nsp1-FILV→S and the most cohesive Nup98-glyco (at identical grafting density) would translate into a decrease in the mesh size by 40% or more. This simple estimate illustrates that a compaction of the FG domain meshwork through interchain interactions (Fig. 8 b) can decrease the size-exclusion limit for inert proteins considerably. We would like to stress that the improvement in size selectivity through film compaction is expected to persist even if the individual interchain interactions (or cross-links) are very short-lived. In such a “compacted meshwork,” the size-exclusion limit arises predominantly from the mutual confinement of interpenetrating polymer chains (33,34). With increasing stability, cross-links add another quality to the meshwork, i.e., they improve size selectivity further, because they enhance the spatial confinement of chains and thereby stabilize the meshes (33). Reconstituted NPCs have so far only been observed to be functional with strongly cohesive FG domains such as Nup98-glyco (21). The relative contribution of compaction and stable cross-links, as formed in a hydrogel, to the size-selective permeability of NPCs, however, remains to be elucidated.

Based on our experimental results and polymer theory concepts, we conjecture that the formation of a dense and continuous pore-filling phase of FG domains is a viable strategy to create a barrier that effectively excludes inert molecules based on their size. The tuning of the overall cohesiveness emerges as a robust and efficient way to generate such architecture for the grafting densities and FG domain contour lengths that are typical in NPCs. At the same time, such a phase would enable translocation of NTRs, according to the selective phase model, as previously demonstrated in vitro with macroscopic FG domain hydrogels (18,25,49) and reconstituted NPCs (21). In the presence of NTRs, FG domain meshworks were found to have enhanced size selectivity (28,50). Further studies on FG domain monolayers should aim at understanding how NTRs affect the morphology (26,51), size selectivity, and mechanical properties (27) of FG domain meshworks.

FG domains can form nanoscopic hydrogels

Structural characterization by AFM (Fig. 5 a–c) and FRAP analysis (Fig. 6 a) provides strong evidence that, in physiological buffer, end-grafted Nup98-glyco assemblies into a
nonfluid, water-retaining phase, i.e., a hydrogel. This implies that FG domains can retain hydrogel properties even in assemblies with dimensions comparable with the NPC, where the size of the assembly is only a few times larger than the native extension of the individual molecules in isolation. From a comparison of the phase behavior of irregular FG domains (Fig. 5a–c) with theoretical predictions for regular polymers (Fig. 1b), we conclude that the "effective" Flory interaction parameter χ for Nup98-glyco must be above 0.5.

The Nsp1-WT FG domain forms stable macroscopic hydrogels (17), and also, in the end-grafted nanoscopic system, interactions were clearly evident by the more rapid assembly (Fig. 2), decreased thickness (Fig. 3) and increased stiffness (Fig. 4) of the Nsp1-WT film as compared with the FILV→S mutant. Nevertheless, Nsp1-WT films remained softer and more mobile than Nup98-glyco films (Figs. 4–6), perhaps because only the N-terminal part (residues 1 to 175) of the Nsp1 FG domain is more cohesive than the C-terminal part (residues 200 to 600). A selective permeability barrier in FG-domain-depleted NPCs could be restored by Nup98-glyco or by a multiplied N-terminal part of the Nsp1 FG domain, but not by the complete Nsp1p-WT domain (21), although also the latter forms highly selective macroscopic hydrogels (17,18,21,25). This suggests that nanoscopic details might be of critical functional significance. Indeed, it appears possible that an end-grafted Nsp1-WT domain forms a layered architecture with a gel-like layer originating from its more cohesive portion and a more liquid (and more permeable) layer that originates from its larger less cohesive part and allows nonselective fluxes of macromolecules through the NPC. Since Nsp1-WT does not form disrupted films, we conclude that χ must be around or less than 0.5.

Impact of cohesive interactions on NPC biogenesis and stability

Fig. 2 demonstrates that cohesive interactions can greatly facilitate the assembly of end-grafted FG domain meshworks. Because the NPC is a self-assembled architecture, this effect might be important for the rate of NPC biogenesis. Moreover, stretching of grafted chains in a brush at NPC-relevant grafting densities entails entropic penalties that can readily amount to $10 k_{B}T$ or more. Unless equilibrated by cohesive interchain interactions, this penalty decreases the stability of FG domain anchorage. We therefore propose that cohesive interactions facilitate (and might even be essential for) the correct and timely assembly and for the stability of the permeability barrier. Indeed, a Nup98-FIL→S mutant, were F, I, and L residues were mutated to serines to minimize cohesive interactions, was found to require higher concentrations for efficient incorporation into reconstituted NPCs than wild type Nup98-glyco (21).

Impact of heterogeneities on the performance of the permeability barrier

We argued above that a continuous pore-filling meshwork is required for the correct function of the permeability barrier. This meshwork, however, may not be entirely homogeneous. For example, it is well known that the density of noncohesive polymers in planar brushes exhibits a parabolic profile in the direction normal to the surface (52,53). Spatial variations in the FG repeat density might very well occur inside the NPC, both along and perpendicular to the channel axis, owing to the geometrical constraints of the channel (48,54). Variations in FG repeat density and cohesiveness within (19,32) and between (20) individual FG domains might contribute further heterogeneities, as illustrated by a recent simulation study (54).

In particular, such variations could explain the results by Ma et al. (55) who proposed preferred transport paths for inert molecules and NTRs, respectively, that were spatially separated yet interdependent. Recent simulations by Osmanovic et al. (47) suggest that tuning of cohesiveness sensibly affects the distribution of FG repeats perpendicular to the channel axis. We conclude that the results by Ma et al. do not represent firm evidence against the selective phase model, as had been proposed by the authors. Instead, we conjecture that the location of transport paths may vary between cellular species as a function of the fine-tuning of cohesive interactions, but that the existence of a preferred path at a precise location is not essential for the functionality of the permeability barrier.

Cohesiveness of FG domains and the position of FG domains in the NPC might also be interconnected to further optimize size and species selectivity of the permeability barrier. For example, FG domains that are located at the periphery of the permeability barrier might be less cohesive, to occupy a larger volume for catching NTRs from solution, whereas FG domains in the center could show stronger cohesion to form a tight and highly size-selective meshwork (20).

Clearly, such heterogeneity effects cannot be captured by simple theories of flexible polymers. Their understanding is likely to require more sophisticated theoretical (47,56) and experimental approaches that consider explicitly the heterogeneous primary structure of FG domains and/or the topology of NPCs. We have therefore intentionally chosen to keep our comparison between theory and experiment largely on a qualitative level. However, we propose that the simple conceptual approach presented here captures essential features underlying the function of the permeability barrier.

CONCLUSION

To summarize, we have demonstrated that FG domain monolayers show different film formation kinetics,
morphologies, dynamics, and mechanical properties depending on the type of employed FG domain. In agreement with predictions from polymer theory, we attribute these findings to different degrees of cohesive interactions between FG domains. Based on the analysis of our data in terms of simple theoretical concepts for assemblies of flexible polymers with varying Flory interaction parameter χ, we propose the formation of a compact FG domain assembly that fills the entire pore—a compacted meshwork—as a key design principle for a functional permeability barrier. Tuning of interchain interactions, within the range of a few $k_B T$ of free energy per chain, emerges as a robust and effective tool to optimize functionality. It should be beneficial for the biogenesis and stability of NPCs, and useful as a design rule for the engineering of fabricated species-selective filtering devices.

SUPPORTING MATERIAL

Five figures and references (57–63) are available at http://www.biophysj.org/biophys/supplemental/S0006-3495(13)01025-4.

We thank Jacob Piehler (Osnabrück, Germany) for providing NTA-functionalized lipids, and Oleg Borisov (Pau, France) for fruitful discussions. R.P.R. acknowledges funding from the Spanish Ministry of Science and Innovation (MICINN, refs RYC2009-04275 and MAT2011-24306), the European Research Council (Starting Grant 306435) and the Department of Industry of the Basque Government. N.B.E. was supported by the Gottingen Graduate School for Neuroscience, Biophysics and Molecular Biosciences (DFG Grant GSC 226/1).

REFERENCES

Biophysical Journal 105(8) 1860–1870