The Proceedings of the National Academy of Sciences

OFFICERS OF THE ACADEMY

FREDERICK SEITZ
President

J. A. STRATTON
Vice President

HARRISON S. BROWN
Foreign Secretary

HUGH L. DRYDEN
Home Secretary

L. V. BERKNER
Treasurer

EDITORIAL BOARD OF THE PROCEEDINGS

SAUNDERS MAC LANE
Chairman

Hugh L. Dryden, Home Secretary
L. V. Berkner, Treasurer

HARRISON S. BROWN, Foreign Secretary
Edwin B. Wilson, Managing Editor

S. Chandrasekhar
Thomas Francis, Jr.
David R. Goddard

G. Evelyn Hutchinson
Arthur Kornberg
Willard F. Libby

J. R. Pierce
S. S. Stevens
Francis J. Turner

Subscription price is $17.50 for one year, $33.50 for two years, and $48.00 for three years. The price of a single issue beginning with volume 47 (1961), is $2.25; through volume 46 (1960), $1.50. Make all remittances payable to the National Academy of Sciences in U.S. currency or its equivalent.

Editorial correspondence should be addressed to the Proceedings of the National Academy of Sciences, 2101 Constitution Avenue, Washington 25, D. C.

Business correspondence should be addressed to the Printing and Publishing Office, National Academy of Sciences, 2101 Constitution Ave., Washington 25, D. C.

Subscribers are requested to notify the Printing and Publishing Office of the Academy and their local postmaster immediately of change of address. Notices to the Academy should provide both the old and the new address.

Microfilms of complete volumes of this journal are available to regular subscribers only and may be obtained at the end of the volume year from University Microfilms, 313 N. First Street, Ann Arbor, Michigan.

Second-class postage paid at Easton, Pennsylvania.

PRINTED IN THE U. S. A.

The Proceedings of the National Academy of Sciences is published monthly by The National Academy of Sciences
MECHANISMS UNDERLYING THE EQUILIBRIUM REACTIONS BETWEEN IONS AND ION-PAIRS IN SOLUTIONS OF ELECTROLYTES, II. THE EFFECT OF TEMPERATURE*

BY LAWRENCE C. KENAUSSIS,† E. CHARLES EVERS,† AND CHARLES A. KRAUS‡

UNIVERSITY OF PENNSYLVANIA AND BROWN UNIVERSITY

Communicated December 12, 1962

The properties of electrolyte solutions are determined by the size, structure, and constitution of the ions of the electrolyte on the one hand and on the size, structure, and constitution of the solvent molecules on the other. The observed properties also depend on the independent variables: concentration, temperature, and pressure. Unless the dependence of the properties on the independent variables is known, it is not possible to determine how these properties may depend on the various constitutional factors of the electrolyte and solvent. Since most measurements are carried out at or near atmospheric pressure and the observed properties are not highly sensitive to this variable, pressure has little effect on most properties as ordinarily observed. However, the properties are quite sensitive to temperature and concentration, particularly the latter.

In the first paper of this series,1 data were presented on the conductance, viscosity, and density of solutions of

\((n\text{-amyl})_4\text{NCNS}\) in \(p\)-xylene at 52° from a concentration of about \(1 \times 10^{-4} \text{N}\) to the molten electrolyte. Data were also presented for solutions of

\((n\text{-butyl})_4\text{NCNS}\) in benzene at 25° from a concentration of approximately \(1 \times 10^{-4} \text{N}\) up to the limit of solubility (2.05 N).2 On the basis of these data and other data in the literature3 relating to solutions of the thiocyanate and other electrolytes in benzene at 25°, mechanisms underlying the equilibrium reactions between ions and ion-pairs have been proposed which account qualitatively for observations in \(p\)-xylene at 52° and in benzene at 25° at concentrations above as well as below the conductance minimum.

At concentrations below the conductance minimum, ion-pairs are formed by the interaction of oppositely charged ions due to Coulomb forces. These ion-pairs are dissociated by the impact of solvent molecules whose thermal energy is sufficiently great to do this. These mechanisms are in accord with the law of mass action as commonly accepted and account for the equilibrium between ions and ion-pairs in solvents of various dielectric constant.

At concentrations near and immediately above that of the conductance minimum, a new mechanism comes into play, as a result of which the ion-fraction, \(F_i\), of electrolyte increases with increasing concentration of electrolyte, as shown by an increase in the equivalent conductance. Such an increase in the ion-fraction
INFORMATION TO CONTRIBUTORS

THE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES publishes promptly brief first announcements of the results of original research by members of the Academy or others. Articles are limited to 8 printed pages and no author may have more than 8 pages altogether in any one issue. Wherever practicable, results should be made clear without elaborate technical details; figures, tables, and formulae should be kept as simple as possible.

MANUSCRIPTS should be in the form of current numbers of the PROCEEDINGS, typewritten in duplicate with double spacing, the author retaining one copy, and addressed to THE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, 2101 Constitution Avenue, Washington 25, D. C. They will be accepted only from the members of the Academy who will assume responsibility for their propriety and scientific standards and for any printing costs in excess of those allowed them by the Academy.

GALLEY PROOF will be sent; as authors' corrections are charged to them, typewritten manuscripts should be letter-perfect. Original art work or figures will be returned if requested when the manuscript is submitted. Because of the time limitations, page proofs will not be sent. Reprints should be ordered when proof is returned on the reprint form enclosed therewith; they will be furnished at cost.