Chagas disease is a vector-borne zoonosis caused by the protozoa Trypanosoma cruzi. This taxon had been described as composed of two lineages (TCI and TCII) and five subgroups (IIa–IIe), but a recent study reported six lineages or subgroups (DTUs) (T. cruzi I–VI). These lineages are defined as sets of stocks that are genetically more related to each other than to any other stock and are identifiable by common genetic molecular and immunologic markers. Trypanosoma cruzi populations circulate in nature in multiple T. cruzi genotypes that coexist in different hosts, including Octodon degus rodents. After a short acute or primary infection, the mammal host sustains subclinical infections, which are microscopically undetectable in peripheral blood during the undetermined and chronic phases. Conversely, parasitemia in those phases is detected only by polymerase chain reaction (PCR). The classic parasitologic diagnostic method for Chagas disease xenodiagnosis, which can amplify T. cruzi after feeding on infected hosts, although xenodiagnosis is specific, it lacks sensitivity and is limited to high levels of parasitemia. The epidemiology of Chagas disease and clinical symptoms are associated with the infective T. cruzi genotypes. Therefore, would be useful to know the dynamics of these genotypes.

In the present study, we assess the occurrence of temporal fluctuations of T. cruzi DTUs in peripheral blood of two naturally infected wild reservoir specimens of O. degus by using a combination of two diagnosis methods: 1) xenodiagnosis with domestic and sylvatic vectors (Triatoma infestans and Mepraia spinolai), respectively, and 2) PCR DNA-based detection specific for minicircles and hybridizations analyses with T. cruzi genotype-specific probes.

Ten nymphs (stages II and III) of each vector species were allowed to feed simultaneously on anesthetized O. degus for 30 minutes or until engorgement on the rodent (mean ± SD weight of ingested blood = 0.2 ± 0.05 mg). After 30 days, feces and intestinal contents of the triatomines were observed under a light microscope. The minimal theoretical parasitemia detected under these conditions is approximately 5 parasites/mL (1 parasite/0.2 mL). However, because several but not all insects (2–5) were parasite positive by visual examination, the estimated parasitemia would be > 10–25 parasites/mL. After microscopic inspection, the intestinal contents of each infected O. degus sample 5, which showed infection with only TCI during the second year, only one genotype (TCII) was detected and another one (TCV) appeared one year later. During the second year, only one genotype (TCII) was detected and maintained. A different scenario was detected for O. degus sample 8 showed mixed infection with DTUs TCI, TCII, and TCVI at time zero for O. degus sample 5, which was infected with a one genotype (TCI), are shown in Figure 1. This result was confirmed with both vector species at different times. Results obtained with O. degus sample 8 showed mixed infection with DTUs TCI, TCII, and TCVI at time zero for M. spinolai, but only TCI for T. infestans. However, one year later, both vectors showed mixed infections with lineages TCI and TCV. After two years, both vectors contained only genotype TCI. After two and a half years, vectors were still infected with TCI.

Trypanosoma cruzi colonizes several tissues and evades the immune response by a concomitant low parasitemia level not detectable by several diagnosis methods. Parasites circulate as mixed infections. This finding is common for T. cruzi because several mammals and vectors are infected with more than one T. cruzi genotype, which results in recombination and hybrid genotypes.

We report that infection of rodents can show temporal fluctuations with different T. cruzi genotypes, which is probably the result of fluctuation of relative proportions of parasite loads of different genotypes in peripheral blood. We detected infections in this O. degus with at least three of the four T. cruzi genotypes during the complete follow-up (xenodiagnosis at time 0). Two genotypes (TCII and TCVI) disappeared, and another one (TCV) appeared one year later. During the second year, only one genotype (TCII) was detected and maintained. A different scenario was detected for O. degus sample 5, which showed infection with only TCI during the entire sampling period.

In this study, we preferentially detected genotype TCII in both vector species. This genotype was likely circulating at high parasitemia levels in O. degus sample 18 because experimental infections in T. infestans with different T. cruzi DTUs indicated that genotype TCII is transmitted at a low rate; genotype TCI
is transmitted at a high rate.12 Our results for \textit{Trypanosoma cruzi} genotypes in these two animals are consistent with local prevalence in the study area.3 Recent studies of \textit{Trypanosoma cruzi} genotypes circulating in the wild vector in this disease-endemic area showed that TCI and TCII are the most prevalent genotypes.5

We suggest that both rodent species showed moderate or high levels of parasitemia. We used xenodiagnosis with two triatomine species because insect vectors amplify \textit{Trypanosoma cruzi} in the midgut, which enables easy detection. Our results indicate fluctuation in specific genotype infections in a \textit{Trypanosoma cruzi}-infected sylvatic rodent.

The temporal fluctuation of the four \textit{Trypanosoma cruzi} genotypes could be explained by at least two hypotheses that are not mutually exclusive. First, colonization of different tissues with \textit{Trypanosoma cruzi} described in patients and experimentally infected animals by polymerase chain reaction.8 Second, infection is controlled by the immune system. Both processes might reach an equilibrium and explain the low parasitemia levels observed in immunocompetent patients in the chronic phase of Chagas disease. Future parasitologic studies of molecular pathogenesis may be necessary to understand the mechanisms underlying infection control in naturally infected hosts.

Disclosure: The authors have no conflicts of interest in relation to this work.

Authors’ addresses: Ricardo Campos, Sylvia Ortiz, Ximena Coronado, and Aldo Solari, Program of Cellular and Molecular Biology, Faculty of Medicine, University of Chile, Casilla, Santiago, Chile, E-mail: asolari@mach.i.med.uchile.cl. Carezza Botto-Mahan and Sylvia Ortiz, Department of Ecological Sciences, Faculty of Sciences, University of Chile, Casilla, Santiago, Chile, E-mail: cbotto@uchile.cl.

REFERENCES

