A novel highly-penetrant form of obesity due to microdeletions on chromosome 16p11.2

Supplementary online material

Supplementary Figure S1

Validation of 16p11.2 deletions by MLPA and determination of their modes of inheritance. MLPA was carried out using 9 probe pairs within and 2 lying outside the deletion (one to each side), as shown in Figure 1, together with 9 control (nominally copy number invariant) probe pairs. Panels show the relative magnitude of the normalised, integrated signal at each probe location in order of chromosomal location. Where DNA was available, samples were analysed if they were identified from GWAS data as carrying a deletion at 16p11.2 (top) or if they were a first degree relative of a proband (bottom). Labels correspond to the case ID of the proband as shown in Table S2; f = father; m = mother; a-c = siblings.
Supplementary Figure S2

Dependence of BMI on age in subjects having a deletion at 16p11.2. Data are shown for all probands identified in this study as having a deletion at 16p11.2, for whom phenotypic information is available. Lines denote the age- and gender-corrected thresholds (solid/broken – male/female) for obesity (adults – BMI ≥ 30 kg.m\(^{-2}\), children ≥ 97\(^{th}\) percentile) and morbid obesity (adults – BMI ≥ 40 kg.m\(^{-2}\), children Z-BMI ≥ 4). Symbols are as follows: Square/circle – male/female; black/grey – ascertained/not ascertained for developmental delay; filled/open – ascertained/not ascertained for obesity. Thus, individuals from general population are shown as open grey circles or squares.
Supplementary Figure S3

Dependence of BMI on age in probands having a deletion at 16p11.2. Data are shown for all individuals identified in this study as having a deletion at 16p11.2, for whom phenotypic information is available. Lines denote the age- and gender-corrected thresholds (solid/broken – male/female) for obesity (adults – BMI ≥ 30 kg.m⁻², children ≥ 97th percentile) and morbid obesity (adults – BMI ≥ 40 kg.m⁻², children Z-BMI ≥ 4). Symbols are as follows: Square/circle – male/female; black/grey – ascertained/not ascertained for developmental delay; filled/open – ascertained/not ascertained for obesity; grey diamond – first-degree relative of a proband. Thus, individuals from general population are shown as open grey circles or squares.
Supplementary Figure S4

Transcript levels for genes within and nearby 16p11.2 deletions. Expression data for adipose tissue from the SOS Sib Pair cohort were analysed for probes detecting transcripts for genes lying within the interval chr16:28.4–31.0Mb (see Supplementary Table S4 for details). Transcript levels in the two individuals carrying a deletion of 16p11.2 (black symbols) are plotted alongside those for their non-obese siblings (white). Also shown are box plots summarising the data for the other 157 obese subjects from this study, indicating the 10th, 25th, 50th, 75th and 90th percentiles for each transcript. The positions of the the 16p11.2 deletion and the flanking segmental duplications relative to the transcripts are indicated by a solid line and grey bars at the left axis.

Within the deleted region, there is a consistent reduction in expression in the subjects carrying a deletion, relative to both their siblings and to other obese subjects. In contrast, although CNVs have been shown to have the potential to affect expression of neighbouring genes up to 0.5Mb distant\(^{12,43}\), no such clear and consistent differences in transcript levels are observed for the genes lying nearby, outside the region of the 16p11.2 deletion.
Supplementary Figure S5

Graphical representation of the output of CNV discovery algorithms. Copy number calls at SNPs within and surrounding the deleted region (black bar) and its flanking segmental duplications (grey bars) are shown as follows: blue – 1 copy; cyan – 2 copies (i.e. no aberration); yellow – 3 copies; red – 4 copies. (a) cnvHap output for the NFBC cohort, showing all individuals with at least 10 aberrant probes within the deletion; (b) Gaussian Mixture Model output for the CoLaus cohort, showing all individuals with at least 1 aberrant probeset. The different patterns for the two methods reflect the locations interrogated by the respective platforms, and also the respective sensitivities of the platforms and algorithms to copy number variation.
Supplementary Figure S6

Validation of deletion calls from Illumina genotyping data. LogR ratio (LRR) data exported from Illumina BeadStudio was normalised with respect to the median and variance for each probe, and smoothed by averaging over a 9-point moving window. Example data are shown for samples from the NFBC cohort that had normal copy number (green) and which carried a deletion (blue) or duplication (purple).
Supplementary Table S1

Cognitive/behavioral symptoms observed in carriers of 16p11.2 deletions. Data are shown for patients ascertained for developmental delay, and for affected relatives if available. ‘No data’ indicates that this phenotype was not assessed. NA – not applicable due to age of the patient.

<table>
<thead>
<tr>
<th>case ID</th>
<th>Age</th>
<th>Mental retardation</th>
<th>Language</th>
<th>Hyperphagia</th>
<th>ASD</th>
<th>Other Behavioral symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.1</td>
<td>Borderline-mild</td>
<td>Language delay</td>
<td>yes</td>
<td>no</td>
<td>no data</td>
</tr>
<tr>
<td>2</td>
<td>16.3</td>
<td>Executive function deficits</td>
<td>Language deficit</td>
<td>yes</td>
<td>no, social cognition deficit</td>
<td>Shyness, obsessive compulsive disorder</td>
</tr>
<tr>
<td>3</td>
<td>5.3</td>
<td>No</td>
<td>Echolalia</td>
<td>no data</td>
<td>yes</td>
<td>Stereotypes, hyperactivity</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>no</td>
<td>no data</td>
<td>yes</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>No</td>
<td>Dysphasia</td>
<td>fluctuating no</td>
<td>Hyperactivity</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>Mild</td>
<td>Language delay</td>
<td>severe</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>Mild-modeate</td>
<td>Language delay</td>
<td>mild</td>
<td>no data</td>
<td>no data</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>Mild, IQ 72-49</td>
<td>mild language delay</td>
<td>yes</td>
<td>no</td>
<td>anxiety</td>
</tr>
<tr>
<td>9</td>
<td>11.5</td>
<td>Mild</td>
<td>Language delay</td>
<td>no</td>
<td>yes</td>
<td>Oppositional, aggressivity, stereotypes</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>NA</td>
<td>NA</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>2.8</td>
<td>Mild to moderate, global delay</td>
<td>Language delay</td>
<td>yes</td>
<td>no data</td>
<td>Hyperactivity</td>
</tr>
<tr>
<td>12</td>
<td>53</td>
<td>Mild to moderate</td>
<td>no data</td>
<td>no</td>
<td>no</td>
<td>no data</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Developmental age: 5 months</td>
<td>NA</td>
<td>no</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>4.4</td>
<td>Borderline, IQ 73</td>
<td>Language delay</td>
<td>no</td>
<td>no</td>
<td>Hyperactivity</td>
</tr>
<tr>
<td>15</td>
<td>4.8</td>
<td>Mild</td>
<td>Language delay</td>
<td>no</td>
<td>yes</td>
<td>no data</td>
</tr>
<tr>
<td>16</td>
<td>6.9</td>
<td>Mild</td>
<td>Language delay</td>
<td>yes</td>
<td>no</td>
<td>Oppositional, aggressivity</td>
</tr>
<tr>
<td>17</td>
<td>7.5</td>
<td>No, IQ 77-89</td>
<td>Language delay</td>
<td>no</td>
<td>no</td>
<td>Anxiety, hyperactivity</td>
</tr>
<tr>
<td>18</td>
<td>1.9</td>
<td>moderate</td>
<td>Language delay</td>
<td>no</td>
<td>NA</td>
<td>none / NA</td>
</tr>
<tr>
<td>19</td>
<td>4.4</td>
<td>Moderate, IQ 57</td>
<td>Severe language delay</td>
<td>no</td>
<td>yes</td>
<td>Repetitive, restricted behavior</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>Borderline, VIQ: 78, PIQ: 96</td>
<td>Language delay</td>
<td>no</td>
<td>no</td>
<td>Attention deficit</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>Moderate</td>
<td>Severe language delay</td>
<td>no</td>
<td>no</td>
<td>Hyperactivity, temper tantrums, oppositional</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>no data</td>
<td>no data</td>
<td>no</td>
<td>no</td>
<td>Attention deficit, mutism</td>
</tr>
<tr>
<td>63</td>
<td>15</td>
<td>Mild, VIQ: 67, PIQ: 61</td>
<td>no data</td>
<td>yes</td>
<td>no</td>
<td>Hyperactivity, aggressivity, anxiety</td>
</tr>
<tr>
<td>64</td>
<td>36</td>
<td>Borderline</td>
<td>no data</td>
<td>yes</td>
<td>no</td>
<td>no data</td>
</tr>
</tbody>
</table>
Supplementary Table S2

Obesity characteristics of carriers of 16p11.2 deletions. The basis for ascertainment and all available data for gender, age and BMI are shown for each subject identified as carrying a deletion at 16p11.2. Also shown are the methods used to identify the deletion and for its validation, and the inheritance of the deletion as inferred from the results of analysis of parental DNAs where these were available. n.d. – not determined

<table>
<thead>
<tr>
<th>Ascertainment</th>
<th>case ID</th>
<th>gender</th>
<th>location</th>
<th>Age (years)</th>
<th>BMI</th>
<th>inheritance</th>
<th>CNV detection platform</th>
<th>validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>M</td>
<td>Estonia</td>
<td>4.1</td>
<td>15.8</td>
<td>de novo</td>
<td>Illumina Human CNV370-Duo</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>M</td>
<td>Lausanne</td>
<td>16.3</td>
<td>38.6</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 244k</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>M</td>
<td>Lille</td>
<td>5.3</td>
<td>16.4</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>F</td>
<td>Lille</td>
<td>31</td>
<td>62.1</td>
<td>probably inherited</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>Lille</td>
<td>8</td>
<td>22.9</td>
<td>de novo</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>M</td>
<td>Lille</td>
<td>41</td>
<td>61</td>
<td>n.d.</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>M</td>
<td>Lille</td>
<td>10</td>
<td>20.8</td>
<td>inherited (father)</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>F</td>
<td>Lille</td>
<td>11</td>
<td>20.3</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>M</td>
<td>Lille</td>
<td>11.5</td>
<td>17.7</td>
<td>n.d.</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>M</td>
<td>Lille</td>
<td>1.4</td>
<td>18.8</td>
<td>inherited (father)</td>
<td>aCGH Agilent 44k</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>F</td>
<td>Lyon</td>
<td>2.8</td>
<td>16.6</td>
<td>inherited (father)</td>
<td>aCGH Agilent 105K</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>M</td>
<td>Lyon</td>
<td>53</td>
<td>33.3</td>
<td>n.d.</td>
<td>aCGH Agilent 105K</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>F</td>
<td>Nancy</td>
<td>1</td>
<td>14.9</td>
<td>de novo</td>
<td>aCGH Agilent 105K</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>M</td>
<td>Nancy</td>
<td>4.4</td>
<td>16.8</td>
<td>de novo</td>
<td>aCGH Agilent 105K</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>M</td>
<td>Nancy</td>
<td>4.8</td>
<td>20.0</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 105K</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>M</td>
<td>Nantes</td>
<td>6.9</td>
<td>24.1</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 44k</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>M</td>
<td>Nantes</td>
<td>7.5</td>
<td>14.6</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 44k</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>M</td>
<td>Nantes</td>
<td>1.9</td>
<td>15.0</td>
<td>inherited (mother)</td>
<td>aCGH Agilent 44k</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>M</td>
<td>Paris</td>
<td>4.4</td>
<td>16.0</td>
<td>de novo</td>
<td>FISH</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>F</td>
<td>Rouen</td>
<td>8</td>
<td>15.4</td>
<td>n.d.</td>
<td>QMPSF</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>M</td>
<td>Rouen</td>
<td>4</td>
<td>17.3</td>
<td>de novo</td>
<td>QMPSF</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>F</td>
<td>Rouen</td>
<td>8</td>
<td>15.7</td>
<td>inherited (mother)</td>
<td>QMPSF</td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>Lille</td>
<td>6</td>
<td>31.4</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>Lille</td>
<td>10.3</td>
<td>34.8</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>Lille</td>
<td>12</td>
<td>31.9</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>Lille</td>
<td>14.5</td>
<td>40.2</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>Lille</td>
<td>13.3</td>
<td>34.2</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>Lille</td>
<td>15</td>
<td>30.5</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>Lille</td>
<td>6</td>
<td>25.0</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>Nîmes</td>
<td>12.3</td>
<td>29.0</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>London</td>
<td>7.5</td>
<td>29.2</td>
<td>inherited (father)</td>
<td>qPCR</td>
<td>aCGH Agilent 185K</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>M</td>
<td>Estonia</td>
<td>23</td>
<td>36</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>F</td>
<td>Finland</td>
<td>31</td>
<td>33.4</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>Finland</td>
<td>31</td>
<td>45.7</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>Finland</td>
<td>31</td>
<td>19.2</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>F</td>
<td>Lille</td>
<td>28</td>
<td>48.9</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>Lille</td>
<td>33</td>
<td>71.8</td>
<td>inherited (mother)</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>F</td>
<td>Lille</td>
<td>41</td>
<td>51.8</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>Lille</td>
<td>36</td>
<td>57.9</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>M</td>
<td>Lille</td>
<td>16</td>
<td>36.0</td>
<td>inherited (mother)</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>Lille</td>
<td>7</td>
<td>24.2</td>
<td>inherited (mother)</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>F</td>
<td>Lille</td>
<td>6</td>
<td>29.2</td>
<td>inherited (mother)</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>M</td>
<td>Lille</td>
<td>11</td>
<td>25.1</td>
<td>inherited (mother)</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>F</td>
<td>Cambridge</td>
<td>15</td>
<td>43.9</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>M</td>
<td>Cambridge</td>
<td>13</td>
<td>57.0</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>F</td>
<td>Cambridge</td>
<td>15</td>
<td>45.8</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>F</td>
<td>Lille</td>
<td>46</td>
<td>49.6</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>F</td>
<td>Lille</td>
<td>59</td>
<td>71.9</td>
<td>n.d.</td>
<td>qPCR</td>
<td>aCGH Agilent 44K</td>
<td></td>
</tr>
</tbody>
</table>

Obesity & Developmental Delay

General Population

Adult Obesity

Childhood Obesity

Obesity Bariatric Surgery
<table>
<thead>
<tr>
<th>Obesity Discordant Siblings</th>
<th>Proband Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 F Gothenburg 36 51.9 de novo</td>
<td>Illumina Human 610K-Quad</td>
</tr>
<tr>
<td>50 F Gothenburg 35 57.4 de novo</td>
<td>Illumina Human 610K-Quad</td>
</tr>
<tr>
<td>51 F Lausanne 36 73.4 Mother of 2</td>
<td>aCGH Agilent 244K</td>
</tr>
<tr>
<td>52 F Lille</td>
<td>Mother of 3</td>
</tr>
<tr>
<td>53 M Lille 35 59 Brother of 4%^*</td>
<td>aCGH Agilent 44K</td>
</tr>
<tr>
<td>54 M Lille</td>
<td>Father of 7</td>
</tr>
<tr>
<td>55 F Lille 42 34.7 Mother of 8</td>
<td>aCGH Agilent 44K</td>
</tr>
<tr>
<td>56 F Lille 8.5 20.8 Sister of 8</td>
<td>aCGH Agilent 44K</td>
</tr>
<tr>
<td>57 M Lille</td>
<td>Father of 10</td>
</tr>
<tr>
<td>58 M Lyon 37 31.1 Father of 11</td>
<td>qPCR, 3 primer pairs</td>
</tr>
<tr>
<td>59 F Nancy 28 30.1 Mother of 15</td>
<td>qPCR</td>
</tr>
<tr>
<td>60 F Nantes 32 32.8 Mother of 16</td>
<td>FISH</td>
</tr>
<tr>
<td>61 F Nantes 34 31.6 Mother of 17</td>
<td>FISH</td>
</tr>
<tr>
<td>62 F Nantes</td>
<td>Mother of 18</td>
</tr>
<tr>
<td>63 M Rouen 15 32.7 Brother of 22</td>
<td>QMPSF</td>
</tr>
<tr>
<td>64 F Rouen 36 36 Mother of 22</td>
<td>QMPSF</td>
</tr>
<tr>
<td>65 M London 38 40 Father of 31</td>
<td>aCGH Agilent 244K</td>
</tr>
<tr>
<td>66 F Lille</td>
<td>Mother of 37</td>
</tr>
<tr>
<td>67 F Lille</td>
<td>Mother of 40</td>
</tr>
<tr>
<td>68 F Lille</td>
<td>Mother of 43</td>
</tr>
</tbody>
</table>

\%^*The proband’s brother has the deletion, but both parents are deceased so inheritance cannot be confirmed. One instance has been reported\(^\#\) of presumed germ-line mosaicism in which a deletion was found in two siblings but neither parent.
Supplementary Table S3

Obesity phenotype of carriers of 16p11.2 deletions from other publications, as included in Figure 2.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Patient ID</th>
<th>gender</th>
<th>Age (years)</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bijlsma et al.</td>
<td>Case 1</td>
<td>M</td>
<td>44.0</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>Case 2</td>
<td>M</td>
<td>17.2</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>Case 3</td>
<td>F</td>
<td>8.2</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>Case 6</td>
<td>F</td>
<td>7.0</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>Case 8</td>
<td>F</td>
<td>11.0</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>Case 10</td>
<td>F</td>
<td>8.0</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>Case 11</td>
<td>M</td>
<td>4.0</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>Case 13</td>
<td>M</td>
<td>4.8</td>
<td>16.7</td>
</tr>
<tr>
<td>Fernandez et al.</td>
<td>Proband 2</td>
<td>M</td>
<td>13.0</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>Proband 3</td>
<td>M</td>
<td>4.5</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Patient 3b</td>
<td>M</td>
<td>3.5</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>Patient 3c</td>
<td>F</td>
<td>35.5</td>
<td>34.7</td>
</tr>
<tr>
<td>Ghebranious et al.</td>
<td>Twin1</td>
<td>M</td>
<td>28.0</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td>Twin2</td>
<td>M</td>
<td>28.0</td>
<td>34.0</td>
</tr>
<tr>
<td>McCarthy et al.</td>
<td>CHOP1</td>
<td>F</td>
<td>3.0</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>CHOP4</td>
<td>M</td>
<td>14.8</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>03C18520</td>
<td>M</td>
<td>23.0</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>AU041905</td>
<td>M</td>
<td>8.0</td>
<td>15.9</td>
</tr>
<tr>
<td>Shimojima et al.</td>
<td>-</td>
<td>M</td>
<td>3.2</td>
<td>16.5</td>
</tr>
<tr>
<td>Weiss et al.</td>
<td>Pt1</td>
<td>M</td>
<td>6.5</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>Pt3</td>
<td>M</td>
<td>1.4</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>Pt4</td>
<td>M</td>
<td>9.2</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>Pt5</td>
<td>M</td>
<td>9.2</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>Aut1</td>
<td>F</td>
<td>5.2</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Aut2</td>
<td>M</td>
<td>10.5</td>
<td>29.9</td>
</tr>
</tbody>
</table>
Supplementary Table S4

Expression analysis transcript proseset details. The details of probes analysed in the course of expression analysis (Supplementary Figure S4), listing the Affymetrix proseset identification code, the gene whose transcript is listed as being detected by the probe, and the chromosomal coordinate (build hg18) for the start of that gene.

<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Gene</th>
<th>Coordinate</th>
<th>Probe ID</th>
<th>Gene</th>
<th>Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>209275_s_at</td>
<td>CLN3</td>
<td>28396101</td>
<td>242144_at</td>
<td>QPRT</td>
<td>29582101</td>
</tr>
<tr>
<td>210859_x_at</td>
<td>CLN3</td>
<td>28396101</td>
<td>1559584_at</td>
<td>C16orf54</td>
<td>29661285</td>
</tr>
<tr>
<td>220023_at</td>
<td>AC138894.3</td>
<td>28413494</td>
<td>214142_at</td>
<td>ZG16</td>
<td>29679091</td>
</tr>
<tr>
<td>1552995_at</td>
<td>IL27</td>
<td>28418184</td>
<td>202183_s_at</td>
<td>KIF22</td>
<td>29709542</td>
</tr>
<tr>
<td>209230_s_at</td>
<td>NUPR1</td>
<td>28456107</td>
<td>216969_s_at</td>
<td>KIF22</td>
<td>29709542</td>
</tr>
<tr>
<td>221822_at</td>
<td>CACDC101</td>
<td>28472748</td>
<td>207824_s_at</td>
<td>MAZ</td>
<td>29725356</td>
</tr>
<tr>
<td>48117_at</td>
<td>CCDC101</td>
<td>28472748</td>
<td>212064_s_at</td>
<td>MAZ</td>
<td>29725356</td>
</tr>
<tr>
<td>207122_x_at</td>
<td>SULT1A2</td>
<td>28510765</td>
<td>228798_x_at</td>
<td>AC009133.1</td>
<td>29729246</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>SULT1A1</td>
<td>28524404</td>
<td>218300_at</td>
<td>C16orf53</td>
<td>29734786</td>
</tr>
<tr>
<td>238995_at</td>
<td>SULT1A1</td>
<td>28524404</td>
<td>217912_at</td>
<td>C16orf53</td>
<td>29734786</td>
</tr>
<tr>
<td>217314_at</td>
<td>AC145285.2</td>
<td>28618998</td>
<td>202180_s_at</td>
<td>MVP</td>
<td>29739230</td>
</tr>
<tr>
<td>200647_x_at</td>
<td>EEF3S8</td>
<td>28630283</td>
<td>201253_s_at</td>
<td>CDIPT</td>
<td>29777179</td>
</tr>
<tr>
<td>210949_s_at</td>
<td>EEF3S8</td>
<td>28630283</td>
<td>240537_s_at</td>
<td>AC120114.2</td>
<td>29782656</td>
</tr>
<tr>
<td>215230_x_at</td>
<td>EEF3S8</td>
<td>28630283</td>
<td>218720_x_at</td>
<td>SEZL2</td>
<td>29789981</td>
</tr>
<tr>
<td>201806_s_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>202180_s_at</td>
<td>SEZL2</td>
<td>29789981</td>
</tr>
<tr>
<td>207798_s_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>207396_s_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>210949_s_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>200647_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>200647_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>200647_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>211385_x_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>238995_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>217314_at</td>
<td>ATXN2L</td>
<td>28741821</td>
<td>1559599_s_at</td>
<td>MAZ</td>
<td>29789981</td>
</tr>
<tr>
<td>Probe ID</td>
<td>Gene</td>
<td>Coordinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233334_x_at</td>
<td>SULT1A3</td>
<td>30113244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211996_s_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214035_x_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214870_x_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215920_s_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215921_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221501_x_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238449_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1557987_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215123_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215002_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235060_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235167_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238341_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242114_at</td>
<td>AC106782.7</td>
<td>30141697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231989_s_at</td>
<td>AC106782.4</td>
<td>30186315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244766_at</td>
<td>AC106782.4</td>
<td>30186315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210396_s_at</td>
<td>AC106782.4</td>
<td>30204010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202257_s_at</td>
<td>CD2BP2</td>
<td>30269588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202256_at</td>
<td>CD2BP2</td>
<td>30269588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220947_s_at</td>
<td>TBC1D10B</td>
<td>30275923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205163_at</td>
<td>MYLPF</td>
<td>30293613</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227552_at</td>
<td>37135</td>
<td>30296955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227470_at</td>
<td>ZNF48</td>
<td>30313934</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219781_s_at</td>
<td>ZNF771</td>
<td>30326236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218069_at</td>
<td>DCTPP1</td>
<td>30342520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200961_at</td>
<td>SEPHS2</td>
<td>30362453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1554240_a_at</td>
<td>ITGAL</td>
<td>30391484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213475_s_at</td>
<td>ITGAL</td>
<td>30391484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218916_at</td>
<td>ZNF768</td>
<td>30442826</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206180_x_at</td>
<td>ZNF747</td>
<td>30449189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228856_at</td>
<td>ZNF747</td>
<td>30449189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238606_at</td>
<td>ZNF747</td>
<td>30449189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239774_at</td>
<td>ZNF747</td>
<td>30449189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57516_at</td>
<td>ZNF764</td>
<td>30472586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222120_at</td>
<td>ZNF764</td>
<td>30472586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213527_s_at</td>
<td>ZNF688</td>
<td>30488529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213529_at</td>
<td>ZNF688</td>
<td>30488529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235951_s_at</td>
<td>ZNF688</td>
<td>30488529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235950_at</td>
<td>ZNF688</td>
<td>30488529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213525_at</td>
<td>AC002310.1</td>
<td>30491072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1554769_at</td>
<td>ZNF785</td>
<td>30497795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1554770_s_at</td>
<td>ZNF785</td>
<td>30497795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227924_at</td>
<td>ZNF689</td>
<td>30521380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227445_at</td>
<td>ZNF689</td>
<td>30521380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1559397_s_at</td>
<td>PRR14</td>
<td>30569724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218714_at</td>
<td>PRR14</td>
<td>30569724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45687_at</td>
<td>PRR14</td>
<td>30569724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218255_s_at</td>
<td>FBR5</td>
<td>30577790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242217_s_at</td>
<td>FBR5</td>
<td>30577790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238771_at</td>
<td>FBR5</td>
<td>30577790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1552630_a_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1569138_a_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212275_s_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213667_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215053_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38766_at</td>
<td>SRCAP</td>
<td>30617031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203709_at</td>
<td>PHKG2</td>
<td>30667092</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231300_at</td>
<td>C16orf93</td>
<td>30676254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206845_s_at</td>
<td>RNF40</td>
<td>30681100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239801_at</td>
<td>RNF40</td>
<td>30681100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1556368_at</td>
<td>RNF40</td>
<td>30681100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1556369_a_at</td>
<td>RNF40</td>
<td>30681100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213196_at</td>
<td>ZNF629</td>
<td>30697271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219072_at</td>
<td>BCL7C</td>
<td>30752874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206813_at</td>
<td>CTF1</td>
<td>30811875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1553586_at</td>
<td>NCRNA00095</td>
<td>30841418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228277_at</td>
<td>FBX19</td>
<td>30841893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221864_at</td>
<td>ORA13</td>
<td>30867888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213202_at</td>
<td>SETD1A</td>
<td>30876116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222817_at</td>
<td>HSD3B7</td>
<td>30904020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230691_at</td>
<td>STX1B</td>
<td>30908078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203530_s_at</td>
<td>STX4</td>
<td>30951820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229395_at</td>
<td>STX4</td>
<td>30951820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219047_s_at</td>
<td>ZNF668</td>
<td>30979672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204876_at</td>
<td>ZNF646</td>
<td>30993265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214226_at</td>
<td>AC135050.2</td>
<td>31002259</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table S5

Details of genes lying within the deleted region at 16p11.2. Gene name, coordinates and strand of protein coding region are according to genome build hg18. Protein function descriptions are based on GeneCards entries (http://www.genecards.org/) or from the indicated references. Change in expression is given as the mean transcript level (all probes) in the 2 deletion carriers relative to obese (normal/lean) subjects (data as in Supplementary Figure S4). Possible functional relevance to obesity (bold type) or developmental delay/cognitive deficit (italics) is as indicated. The first three pairs of genes lie within the segmental duplications.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>CDS start</th>
<th>CDS end</th>
<th>Strand</th>
<th>Change in Expresion</th>
<th>Protein function</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOLA2</td>
<td>29365833</td>
<td>29373786</td>
<td>-</td>
<td>-0.6 (0.8)</td>
<td>Possibly involved in cell proliferation or cell-cycle regulation</td>
<td></td>
</tr>
<tr>
<td>BOLA2B</td>
<td>30111796</td>
<td>30112615</td>
<td>-</td>
<td>-</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>GIYD1</td>
<td>29373376</td>
<td>29377041</td>
<td>+</td>
<td>+</td>
<td>GIY-YIG domain containing</td>
<td></td>
</tr>
<tr>
<td>GIYD2</td>
<td>30112906</td>
<td>30116288</td>
<td>+</td>
<td>+</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>SULT1A4</td>
<td>29373902</td>
<td>29383801</td>
<td>+</td>
<td>1.0 (1.5)</td>
<td>Induced in response to fasting or as a result of a defect in leptin signalling</td>
<td>45-47</td>
</tr>
<tr>
<td>SULT1A3</td>
<td>30119550</td>
<td>30122742</td>
<td>+</td>
<td></td>
<td>Catalyzes the sulfate conjugation of phenolic monoamine neurotransmitters</td>
<td>44</td>
</tr>
<tr>
<td>SPN</td>
<td>29582550</td>
<td>29583753</td>
<td>+</td>
<td>1.1 (1.1)</td>
<td>Sialophorin, CD43. Activator of JNK1 and MAPK3 signalling</td>
<td>45-47</td>
</tr>
<tr>
<td>QPRT</td>
<td>29598019</td>
<td>29616233</td>
<td>+</td>
<td>1.2 (1.3)</td>
<td>Catabolism of quinolinate, a neural excitotoxin and NMDA receptor agonist</td>
<td>48</td>
</tr>
<tr>
<td>C16orf54</td>
<td>29663098</td>
<td>29663773</td>
<td>-</td>
<td>0.5 (0.8)</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>MAZ</td>
<td>29725523</td>
<td>29728564</td>
<td>+</td>
<td>0.7 (0.8)</td>
<td>Interacts with SPI in regulating transcription of serotonin receptor gene HTRIA</td>
<td>49</td>
</tr>
<tr>
<td>PRRT2</td>
<td>29731876</td>
<td>29733460</td>
<td>+</td>
<td></td>
<td>Proline-rich transmembrane protein</td>
<td></td>
</tr>
<tr>
<td>C16orf53</td>
<td>29735347</td>
<td>29738576</td>
<td>+</td>
<td>0.8 (0.8)</td>
<td></td>
<td>45-47</td>
</tr>
<tr>
<td>MVP</td>
<td>29749371</td>
<td>29766811</td>
<td>+</td>
<td>0.5 (0.8)</td>
<td>Regulates cytoplasmic localisation of PTEN</td>
<td>50</td>
</tr>
<tr>
<td>CDIPT</td>
<td>29778010</td>
<td>29781679</td>
<td>-</td>
<td>0.4 (0.5)</td>
<td>Phosphatidylinositol synthesis</td>
<td></td>
</tr>
<tr>
<td>SEZ6L2</td>
<td>29790520</td>
<td>29817841</td>
<td>-</td>
<td>0.9 (0.9)</td>
<td>Seizure-related. May contribute to specialized ER function in neurons</td>
<td></td>
</tr>
<tr>
<td>ASPHD1</td>
<td>29819793</td>
<td>29824719</td>
<td>+</td>
<td>1.0 (1.1)</td>
<td>Aspartate beta-hydroxylase domain containing</td>
<td></td>
</tr>
<tr>
<td>KCTD13</td>
<td>29825693</td>
<td>29844855</td>
<td>-</td>
<td>0.6 (0.6)</td>
<td>Similar to TNFAIP1, a mediator of insulin resistance in rodent obesity models</td>
<td></td>
</tr>
<tr>
<td>TMEM219</td>
<td>29881965</td>
<td>29890367</td>
<td>+</td>
<td>0.6 (0.7)</td>
<td>Transmembrane protein</td>
<td></td>
</tr>
<tr>
<td>TAOK2</td>
<td>29896594</td>
<td>29906802</td>
<td>+</td>
<td>0.8 (0.8)</td>
<td>Activates JNK1 and MAPK3 pathways via the upstream MKK3 and MKK6 kinases</td>
<td></td>
</tr>
<tr>
<td>HIRIP3</td>
<td>29912028</td>
<td>29914427</td>
<td>-</td>
<td>0.6 (0.5)</td>
<td>Possibly functions in some aspects of chromatin and histone metabolism</td>
<td></td>
</tr>
<tr>
<td>INO80E</td>
<td>29951532</td>
<td>29924264</td>
<td>+</td>
<td>0.5 (0.5)</td>
<td>INO80 complex subunit E</td>
<td></td>
</tr>
<tr>
<td>DOC2A</td>
<td>29925007</td>
<td>29929044</td>
<td>-</td>
<td>1.0 (1.0)</td>
<td>Possibly involved in Ca²⁺-dependent neurotransmitter release</td>
<td></td>
</tr>
<tr>
<td>C16orf92</td>
<td>29942176</td>
<td>29943049</td>
<td>+</td>
<td>1.1 (1.1)</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>FAM57B</td>
<td>29944004</td>
<td>29949349</td>
<td>-</td>
<td>0.9 (0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDOA</td>
<td>29986076</td>
<td>29989034</td>
<td>+</td>
<td>0.5 (0.6)</td>
<td>Fructose-bisphosphate aldolase A</td>
<td></td>
</tr>
<tr>
<td>PPP4C</td>
<td>30005199</td>
<td>30003884</td>
<td>+</td>
<td>0.7 (0.8)</td>
<td>Regulates JNK1 signalling</td>
<td></td>
</tr>
<tr>
<td>TBX6</td>
<td>30005046</td>
<td>30010015</td>
<td>-</td>
<td>1.0 (1.0)</td>
<td>Transcription factor involved in regulation of early developmental processes</td>
<td></td>
</tr>
<tr>
<td>YPCL3</td>
<td>30011531</td>
<td>30014190</td>
<td>-</td>
<td>0.6 (0.6)</td>
<td>Possibly involved in proliferation and apoptosis in myeloid precursor cells</td>
<td></td>
</tr>
<tr>
<td>GDPD3</td>
<td>30023693</td>
<td>30032300</td>
<td>-</td>
<td>0.8 (0.9)</td>
<td>Glycerophosphodiesterase domain</td>
<td></td>
</tr>
<tr>
<td>MAPK3</td>
<td>30035658</td>
<td>30042031</td>
<td>-</td>
<td>0.7 (0.7)</td>
<td>ERK1. Multiple roles in proliferation and differentiation of preadipocytes</td>
<td></td>
</tr>
<tr>
<td>CORO1A</td>
<td>30104031</td>
<td>30107786</td>
<td>+</td>
<td>0.3 (0.5)</td>
<td>Coronin. Actin binding protein</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary references

