Anti-tumor effects of antibody–alkaline phosphatase conjugates in combination with etoposide phosphate

PETER D. SENTER*, MARK G. SAULNIER‡, GEORGE J. SCHREIBER*, DAVID L. HIRSCHBERG*, JOSEPH P. BROWN*, INGEGERD HELLSTRÖM*, AND KARL ERIK HELLSTRÖM*

Oncogen, 3005 First Avenue, Seattle, WA 98121; and Bristol-Myers Company, 5 Research Parkway, Wallingford, CT 06492

Communicated by George J. Todaro, March 18, 1988

ABSTRACT Two anti-tumor monoclonal antibodies, L6 (anticarcinoma) and 1F5 (anti-B lymphoma), were covalently linked to alkaline phosphatase (AP), forming conjugates that could bind to the surface of antigen-positive tumor cells. The conjugates were capable of converting a relatively noncytotoxic prodrug, etoposide phosphate (EP), into etoposide—a drug with significant antitumor activity. In vitro studies with a human colon carcinoma cell line, H3347, demonstrated that while EP was less toxic than etoposide by a factor of >100, it was equally toxic when the cells were pretreated with L6–AP, a conjugate that bound to the surface of H3347 cells. The L6–AP conjugate localized in H3347 tumor xenografts in nude mice and histological evaluation indicated that the targeted enzyme (AP) was distributed throughout the tumor mass. A strong antitumor response was observed in H3347-bearing mice that were treated with L6–AP followed 18–24 hr later by EP. This response, which included the rejection of established tumors, was superior to that of EP (P < 0.005) or etoposide (P < 0.001) given alone. The 1F5–AP conjugate did not bind to H3347 cells and did not enhance the toxicity of EP on these cells in vitro. In addition, 1F5–AP did not localize to H3347 tumors in nude mice and did not demonstrate enhanced antitumor activity in combination with the prodrug.

A great deal of research in recent years has been directed toward the use of tumor-associated monoclonal antibody (mAb)–drug conjugates and mAb–toxin conjugates (immunotoxins) for the treatment of cancer (1–3). This has been made possible by the availability of mAbs that recognize cell-surface antigens preferentially expressed on a variety of carcinomas, melanomas, lymphomas, and leukemias (4). Such mAbs have been used as carriers of most of the clinically used anticancer agents (5–8) and also for highly potent toxin molecules such as the A-chain toxins (3). The purpose of much of this work has been to increase the therapeutic effect of the cytotoxic agent by enhancing its localization in the target tissue and, at the same time, to spare the nontarget tissues from its toxic effects.

While some promise for this approach has been demonstrated in model systems both in vitro and in vivo, it has become apparent that there are a number of difficulties yet to be overcome. One of the most formidable problems concerning mAb targeting of clinically used anticancer drugs is that the large amount of drug required to exert a cytotoxic effect may be unobtainable because of the limitations imposed by the number of cell-surface antigens and the number of drug molecules that can be attached to each antibody. This has provided the impetus for the use of A-chain toxins, since fewer molecules are required for cytotoxic activity (3).

An additional obstacle is posed by the fact that most anticancer drugs and all A-chain toxins have special intracellular sites of activity. Immunonoconjgates that are directed toward tumor-associated antigens that are not internalized (9) or that are transported to the lysosome, where the drug or toxin is degraded (3), may be of limited use. Finally, for immunoconjugates to be effective, the vast majority of the target-cell population must express the cell-surface antigen. The clonal instability and heterogeneity of tumor-cell populations complicates the use of immunonoconjgates, since not all of the target cells will express the antigen, and antigen-positive cells can give rise to antigen-negative progeny (10, 11).

We wish to report here a method for the delivery of cytotoxic agents to tumor cells that has been designed to overcome the limitations imposed by low drug potency, antigen heterogeneity, and the need for antibody internalization. In this approach (Fig. 1), antibodies are used to deliver enzymes to the surface of tumor cells. The enzymes are capable of converting relatively nontoxic prodrugs, which are administered after the conjugates have bound to the cells, into active cytotoxic agents. The application of this methodology for the release of etoposide from etoposide phosphate (EP) by antibody–alkaline phosphatase (AP) conjugates is presented.

MATERIALS AND METHODS

Proteins and Cell Line. The mAbs used were L6 (lgG2a), which binds to a carbohydrate antigen on human carcinomas (12), and 1F5 (lgG2a), which is specific for the CD-20 antigen on normal and neoplastic B cells (13). AP from calf intestine was purchased from Calzyme (San Luis Obispo, CA). NaDodSO4/PAGE indicated it to be a homodimer of 140 kDa. The cell line H3347 was established at Oncogen from a metastatic human colon carcinoma. L6 binds strongly to H3347 cells (saturation at 10 μg/ml), whereas 1F5 shows no apparent binding to these cells.

Preparation and Hydrolysis of EP. Etoposide (Bristol-Myers) was phosphorylated with an equimolar amount of phosphoryl chloride in acetonitrile and N,N-diisopropyl ethyl amine. The intermediate was hydrolyzed with aqueous NaHCO3 and purified on a C18 silica gel column. The column was washed extensively with H2O, and the product was then eluted with 20% (vol/vol) methanol in H2O. The structure was confirmed through elemental analysis, NMR (13C, 1H, 31P), and mass spectrometry.

EP (0.1 mM) in 100 mM Tris (pH 7.2) was converted quantitatively to etoposide by either free AP or antibody-bound AP (10 μg/ml) within 5 min. The reaction was monitored by HPLC using a C18 column and 50% (vol/vol) aqueous methanol as eluant. In the absence of enzyme, no hydrolysis was observed after 8 hr.

Preparation and Characterization of mAb–AP Conjugates. Conjugates were prepared by using stable thioether bonds

Abbreviations: AP, alkaline phosphatase; EP, etoposide phosphate; mAb, monoclonal antibody.

*To whom reprint requests should be addressed.
Immunology: Senter et al.

Fig. 1. Targeted enzymes for prodrug activation. (A) Antibody–enzyme conjugate binds to antigen-positive cell population (open circles). Hatched circles, antigen-negative cells. (B) Enzyme converts prodrug into active drug. (C) Drug (d) enters cells, resulting in cell death.

according to described methods (9). Briefly, the mAbs were modified with iminoothiolane (0.5 mM) to introduce a single free thiol group. AP was modified with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC, Pierce). The modified proteins were combined, and the resulting conjugates were purified by gel filtration on S-300 Sephacryl. Conjugates purified in this manner were free of unconjugated proteins and aggregates. The concentrations were determined by absorbance at 280 nm, in which solutions (1 mg/ml) of the mAbs (160 kDa) and AP (140 kDa) absorb 1.4 and 0.76 OD units, respectively.

The enzyme activity of the conjugates was compared to unmodified AP with p-nitrophenyl phosphate as the substrate (14). All activity was preserved in the conjugate preparations. The antigen-binding activity on H3347 cells was measured with a Coulter Epics-C fluorescence cell analyzer and fluorescein isothiocyanate goat anti-mouse antibody as a secondary binding agent, as described (12). L6 and L6–AP bound equally well to H3347 cells, while 1F5 and 1F5–AP showed no detectable binding activity.

In Vitro Cytotoxicity. A suspension of 10⁶ H3347 cells in 0.1 ml of incomplete modified Dulbecco’s medium (IMDM) with 10% (vol/vol) fetal calf serum was kept for 1 hr at 4°C in the presence of conjugate (5 μg/ml). The cells were washed twice with the medium containing 10% fetal calf serum, resuspended (1 ml), and plated into 96-well microtiter plates (10,000 cells per well). The drug or prodrug in IMDM was added and incubation at 37°C was commenced for 6 hr. The cells were then washed twice, and incubation was continued for an additional 12 hr, followed by a 6-hr pulse with [³H]thyridine (1.0 μCi per well; 1 Ci = 37 GBq). The plates were frozen at −20°C to detach the cells, and the cells were harvested onto glass fiber discs. The filters were counted on a Beckman 3701 scintillation counter.

In Vivo Studies. BALB/c nu/nu female mice (4–6 wk old) from Life Sciences (Saint Petersburg, FL) were injected with 10⁶ H3347 cells subcutaneously (s.c.) in the left and right hind flanks. The tumor cells (in IMDM) were obtained from in vitro cultures that had been suspended by treatment for 2 min with trypsin (0.5 g/liter) and EDTA (0.2 g/liter). They were washed twice with IMDM and incubated for 1 hr at 37°C in IMDM with 10% fetal calf serum. The cells were washed, suspended in phosphate-buffered saline (PBS), and kept at 4°C prior to injection. Both the localization and therapy studies began when the tumors reached an average size of 225 mm².

Localization of the Conjugates. L6 and L6–AP were labeled with ¹²⁵I and 1F5 and 1F5–AP were labeled with ¹³¹I by the Iodo-Gen method (15). Two days before the localization experiments, the animals were put on 0.5% (vol/vol) Lugol’s iodine solution. Each mouse was injected intraperitoneally (i.p.) with 100 μg (based on each mAb) of either of the following solutions: L6–AP (5 μCi) and 1F5–AP (2.5 μCi) in 0.2 ml of PBS (pH 7.2) or a combination of L6 (5 μCi) and 1F5 (2.5 μCi) in 0.2 ml of PBS. At periodic intervals, the mice were anesthetized, bled through the orbital plexis, and sacrificed. Tissues were weighed and then assayed on a γ-counter.

Two methods were used to evaluate the level of AP activity in the tumor. Method A: The tumors from an untreated mouse, or a mouse that had been treated 24 hr earlier with L6–AP (100 μg) were washed and then gently rotated at 23°C with p-nitrophenyl phosphate (1 mg/ml) in 100 mM Tris (pH 9.5) containing 100 mM NaCl and 5 mM MgCl₂. The course of the reaction was monitored by measurement of the p-nitrophenol released at 410 nm, and the results were corrected for tumor weight. Method B: Excised tumors were quickly frozen to −28°C and sequential 8-µm cross-sections were made with a Reichert–Jung microtome. The phosphatase activity was measured with an AP substrate kit from Vector Laboratories (Burlingame, CA), and the results were compared to sections that were stained with hematoxylin and eosin.

In Vivo Tumor Therapy. Conjugates (0.1 ml containing 300 μg of mAb in PBS), etoposide (0.2 ml containing 1.2 mg of etoposide in dimethyl sulfoxide/H₂O (2:3)), and EP (0.2 ml containing 2 mg of EP in H₂O) were administered according to the treatment schedule shown in Fig. 5. Tumor volumes were estimated by the following formula: longest length × (perpendicular width)²/2.

RESULTS

Preparation of the Prodrug and Conjugates. EP was prepared by condensation of phosphoryl chloride with etoposide. The product was converted to the disodium salt and was very soluble in water (Fig. 2). The susceptibility of the phosphate to enzymatic cleavage was determined by reacting 0.1 mM EP with AP (10 μg/ml), and it was found that quantitative hydrolysis occurred in <5 min.

The enzyme AP (140 kDa) was covalently linked to the mAbs L6 (12) and 1F5 (13) through a stable thioether bond. This was achieved by reacting the mAbs with iminoothiolane and AP with succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (9). Reasonable yields (~25%) of monomeric adducts (antibody/AP, antibody/EP) were obtained. The enzymes were characterized by NaDodSO₄/PAGE and were free of aggregated or unconjugated proteins. Furthermore, no apparent loss in enzymatic activity was observed when AP was attached to the mAb, as evidenced by the fact that the conjugates and free enzyme displayed equal activities on the substrates p-nitrophenyl phosphate and EP. FACs analysis served to establish that L6 and L6–AP bound equally well to the H3347 colon carcinoma cell line (saturating mAb concentration of ~10 μg/ml), while no detectable binding by 1F5 or 1F5–AP was observed to this cell line. The method used for conjugation thus provided well-defined material in which both the enzymatic and binding activities were preserved.

In Vivo Cytotoxicity. The cytotoxic effects of etoposide and the prodrug EP were determined by measuring the incorporation of [³H]thyridine into the DNA of H3347 cells. Etoposide (IC₅₀, 1 μM) was >100-fold more toxic than EP (35%
inhibition at 100 μM; Fig. 3). Pretreatment of the cells with 1F5–AP prior to produg exposure resulted in no enhance-
ment of cytotoxicity. However, a dramatic increase of cyto-
toxic activity was observed when the cells were first exposed
to L6-AP and then to EP. The cytotoxic effect of this
combination was comparable to that of etoposide alone, and
it was antigen specific.

Localization of the Conjugates. In vivo studies were under-
taken with BALB/c nu/nu mice that had H3347 tumors
growing bilaterally. L6–AP and 1F5–AP were radiolabeled
with 125I and 131I, respectively, by using the Iodo-Gen
method (15). A comparison with 125I-labeled L6 and 131I-
labeled 1F5 was made by injecting each mouse i.p. with either
both conjugates or both mAbs and determining the ratios of
specific (125I) to nonspecific (131I) uptake of counts in various
tissues. The results for tumor and liver uptake are summa-
rized in Table 1.

Unconjugated L6 localized efficiently to the tumor within
24 hr and remained there for at least 48 hr. During this period,
the ratio of L6 to 1F5 in the tumor ranged from 8 to 12, while
the ratio in the liver was quite low (1.3–1.4). The maximum
level of specific uptake in the tumor for L6-AP occurred
around 24 hr, at which point the ratio of L6-AP to 1F5–AP
was 10.0. These results indicated that L6-AP localized within
the tumor far better than did 1F5–AP but not as well as
unmodified L6.

It was of considerable importance to determine the amount
of phosphatase activity in the tumor and the degree to which
this activity could be raised by targeting the enzyme with a
mAb. Tumors were excised from mice that had been treated
for 24 hr with L6–AP, and the total phosphatase activity was
measured with p-nitrophenyl phosphate used as a substrate.
It was found that tumors from mice that had received the L6–
AP conjugate displayed as much as 10 times the level of the
phosphatase activity observed in tumors from untreated mice
(Fig. 4A).

A more detailed analysis of phosphatase activity was
undertaken on cross-sections of tumors obtained from mice
that had been untreated or previously treated with L6–AP or
1F5–AP. The activity was estimated by immunohistology
with a phosphatase substrate that deposited a dark precipitate
at the site of enzyme activity. Little activity was detected
in tumors from mice that were untreated or treated with 1F5–
AP (Fig. 4B). However, in mice that received L6–AP,
phosphatase activity was greatly increased and could be seen
distributed throughout the tumor. Microscopic evaluation
revealed that most of the tumor cells in the L6–AP-treated
mice stained highly positive for phosphatase activity.

In Vivo Antitumor Activity. Therapy experiments were
performed on mice that had s.c. tumors 225 mm3 in volume.
The conjugates L6–AP and 1F5–AP were administered (i.p.)
18–24 hr before treatment with EP. Tumor growth in these
groups was compared to that in untreated mice and in mice
treated with maximum tolerated doses of etoposide or EP
alone. The treatment schedule and the results are shown in
Fig. 5.

Etoposide had very little effect on tumor growth at the dose
used, and higher doses were not well tolerated. The produg
EP was less toxic to the animals, and the higher dose that
could therefore be administered resulted in a greater anti-
tumor effect than seen with etoposide itself. A similar degree of
antitumor activity was observed in mice receiving the control
conjugate 1F5–AP before treatment with EP. When, on the

<table>
<thead>
<tr>
<th>Time after injection, hr</th>
<th>L6 Tumor</th>
<th>L6 Liver</th>
<th>L6-AP Tumor</th>
<th>L6-AP Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.6 (8.0)</td>
<td>4.9 (2.0)</td>
<td>1.5 (7.5)</td>
<td>5.2 (0.7)</td>
</tr>
<tr>
<td>24</td>
<td>3.6 (12.0)</td>
<td>2.3 (1.4)</td>
<td>1.0 (10.0)</td>
<td>1.3 (1.3)</td>
</tr>
<tr>
<td>48</td>
<td>4.0 (8.0)</td>
<td>2.5 (1.3)</td>
<td>0.5 (5.0)</td>
<td>0.8 (1.0)</td>
</tr>
</tbody>
</table>

Numbers in parentheses represent ratios of L6/1F5 or L6–
AP/1F5–AP.
The conjugates are used in therapy. The excision of tumors is shown in Table 3. A non-disrupted whole tumor was suspended in a solution of p-nitrophenyl phosphate, and p-nitrophenol (PNP) release was determined at 410 nm. Treated animals received 100 µg (based on L6) of L6-AP 24 hr before tumor excision. (B) Tumor cross-sections (6 µm) were stained either with hematoxylin and eosin (H. and E.) or with AP substrate (dark areas indicate high phosphatase activity). The tumors were taken from untreated mice and from mice that had been treated 24 hr earlier with 300 µg (based on mAb) of either L6-AP or 1F5-AP.

The other hand, the mice were treated with L6-AP followed by EP, a much more pronounced antitumor effect was observed. L6-AP alone had no effect on tumor growth (data not shown).

A summary of the responses of each individual tumor to the therapy is shown in Table 2. Of 16 tumors in the mice treated with L6-AP and EP; 6 tumors underwent complete regression and 2 others were smaller than at the initiation of treatment. No complete or partial responses were observed in any of the other treatment protocols.

DISCUSSION

The general approach described here involves a two-step procedure in which an antibody–enzyme conjugate is first bound to noninternalizing cell-surface antigens, after which a relatively nontoxic prodrug is administered. The enzyme is chosen so that it can convert the prodrug into an active drug. The drug is released extracellularly where it can then diffuse into both the antigen-positive tumor cells and into nearby cells (including tumor cells) that are antigen negative. A key feature to this approach is that the bound enzyme can undergo numerous substrate turnovers, thus amplifying greatly the number of active drug molecules released in the tumor vicinity. By doing so, many of the problems associated with antigen heterogeneity and limited drug potency can be overcome.

The specific example involving the hydrolysis of EP by the enzyme, AP, or conjugates containing AP, demonstrates the feasibility of this strategy. Etoposide itself is cytotoxic (Fig. 3) and is used clinically for treatment of a variety of human cancers (16). The phosphate-containing prodrug EP is only weakly cytotoxic, which may be due to its inability to penetrate through the cell membrane.

Treatment of H3347 cells in vitro with the antigen-specific conjugate L6-AP and then with EP resulted in cytotoxic activity that was comparable to that of etoposide itself (Fig. 3). The antigen specificity of this process is indicated by the fact that EP cytotoxicity was not enhanced if the cells were pretreated with the control conjugate 1F5-AP.

Localization studies were undertaken to find out how rapidly the L6-AP conjugate accumulated in the tumor. This information was necessary to have, so that an appropriate interval between administration of the conjugate and the prodrug could be established. It was found that an appreciable level of uptake of L6-AP occurred 24 hr after conjugate treatment (Fig. 4). As expected, very little 1F5-AP localized the tumor, reflecting the fact that the conjugate does not bind to H3347 cells. Histological evaluation revealed not only that the tumor mass in animals treated with L6-AP was highly enriched in phosphatase activity, but that the conjugate had succeeded in permeating throughout the entire tumor.

The therapy involved L6-AP conjugate administration followed by prodrug (EP) treatment 18–24 hr later (Fig. 5). The results were compared to groups receiving drug, prodrug, or a nonbinding conjugate (1F5-AP) plus prodrug. A profound antitumor response was observed in animals that were treated with the combination of L6-AP and EP. This response exceeded that for the control conjugate 1F5-AP, in combination with EP, suggesting that the antigen-bound conjugate could release the active anticancer agent etoposide at the tumor site. It was surprising that EP alone had more antitumor activity than etoposide (P < 0.05). This might be due to the fact that the two drugs have different pharmacokinetic properties, and that EP releases etoposide over a period of time as it is hydrolyzed. In addition, since EP was less toxic to the mice than etoposide, it was possible to use a greater dose.

The combination of a mAb–AP conjugate and EP was chosen as a model to test the concept depicted in Fig. 1. Originally, there were some questions regarding its potential for in vivo use, since AP is present in many biological tissues.
(17). It is apparent, however, that a significant therapeutic advantage may be gained with AP conjugates and EP. In view of the data presented here, we believe that a substantial amount of active etoposide is generated by the conjugate at the tumor site, and that consequently the tumor is exposed to a higher drug dose than could normally be achieved by systemic administration of the drug itself.

We thank Helen Wan, Stephanie Ashe, Steve Hartman, and Judy Anderson for their skilled technical assistance; Jeff Ledbetter for providing the IF5 antibody; Wes Cosand for helpful discussions; and Virginia LaMar for typing the manuscript.