Lipase Activity of Bovine Mammary Gland

By D. M. F. Cooper and W. K. Downey. (National Dairying Research Centre, Fermoy, Co. Cork, Irish Republic)

The lipase activity of the mammary-gland extracts (0.4–1.5 μequiv. of acid/min per g of tissue; substrate tributyrin emulsion) is associated with macromolecules. These are not sedimented by centrifugation at 38000 g for 2 h and are eluted at the void volume of Sepharose 4B columns, indicating an apparent molecular weight greater than 20 × 10^6. On mixing pancreatic lipase with the extracts the enzyme binds to the macromolecules, which thus appear to be complexes composed of mammary-gland lipase(s) in association with other proteins. Lipid or other hydrophobic interactions are apparently involved in maintaining the mammary-gland lipase complexes; the addition of dimethylformamide (final concn. 1.3 M) to the extract followed by gel filtration on Sepharose 4B columns equilibrated with eluent containing dimethylformamide dissociates the complexes, and the lipase activity is eluted (recovery 60%) in a position corresponding to a protein of molecular weight 0.63 × 10^6. Similarly the complexes are also completely dissociated by gel filtration on Sepharose 2B in the absence of dimethylformamide and, since the eluted lipase again has an apparent molecular weight of approximately half a million, it may represent the free enzyme.

Milk lipases may be derived from the mammary gland and the casein–lipase complexes of milk (mol.wt. > 100 × 10^6) exhibit a number of properties (Downey & Murphy, 1970) similar to those of the mammary-gland activity.

In the absence of dimethylformamide the lipase activity is quantitatively eluted from Sepharose 4B columns, which had been calibrated for molecular-weight determination with spherical plant viruses and macromolecules, as two overlapping peaks at or near the void volume (mol.wt. > 20 × 10^6) followed by a third lipase peak (mol.wt. approx. 1.5 × 10^6). The first peak appears to represent the intact lipase–protein complexes and exhibits little esterase activity. The other two are attributed to intermediate dissociation products, and the esterase activity of the extracts (0.4–0.8 μequiv. of acid/min per g of tissue; substrate p-nitrophenyl acetate) is quantitatively eluted with the latter of these two peaks. After dimethylformamide treatment the esterase is eluted (recovery 60%) coincidentally with the free lipase in a single peak of molecular weight 0.63 × 10^6. These results may indicate an alteration in the substrate specificity of the lipase resulting from dissociation of the lipase–protein complexes, similar

D. M. F. C. received a grant from The Agricultural Institute. The assistance of Mr S. A. Ahern and Mr R. D. Kearney is gratefully acknowledged, and the encouragement of Professor T. G. Brady is appreciated.


The Influences of β-Casein Removal on Bovine Casein Micelles


Over 50% of the β-casein is dissociated from casein micelles (relative αs-, β- and κ-casein composition 5.6, 3.4 and 1.0 respectively) together with less than 5% of the αs- and 20% of the κ-casein by gel filtration (Downey & Murphy, 1970) of skim milk at 4°C. Approx. 80% of the casein removed from the micelles and eluted with the whey proteins is β-casein. The average relative composition of the resultant micelles that are eluted at the void volume is 6.4, 2.8 and 0.8 parts of αs-, β- and κ-casein respectively, and their stability towards Ca2+ and susceptibility to rennin proteolysis are similar to those reported (McGann & Pyne, 1960; Fox, 1969) for milk. On a second gel filtration of these micelles a further 30% of the β-, 10% of the κ- and 5% of the αs-casein is dissociated and the resultant micelles (6.8, 2.2 and 1.0 parts of αs-, β- and κ-casein respectively) are precipitated by 50 mmol per litre of calcium chloride (1h at 37°C). Approx. 10% of the β-casein of these micelles, but very little αs- or κ-casein, is removed by a third gel filtration, and the micelles (7.5, 1.7 and 0.8 parts of αs-, β- and κ-casein respectively) are eluted at the void volume and are unstable to 10 mmol per litre of calcium chloride (1h at 37°C). On subsequent gel filtration little or no free casein is detected, and the casein micelles eluted as an opaque peak at the void volume (mol.wt. >10^4) attain a final relative composition of 8.0, 1.2 and 0.8 parts of αs-, β- and κ-casein and are immediately precipitated on addition of 10 mmol per litre of calcium chloride at 37°C.

This investigation suggests that hydrophobic interactions are involved in maintaining most (approx. 80%) of the β-casein within the hydrophobic core (Hill & Wake, 1969) of casein micelles. As the temperature is decreased hydrophobic bonds are weakened (Mahler & Cordes, 1967), and this β-casein accordingly dissociates and is released through the structural lattice (Ribadeau-Dumas & Garnier, 1970) of the casein micelles. As indicated by restricted passage through the pores of Sephadex G-200, the free β-casein exhibits an apparent molecular weight of 200,000, and, since at least 50% of the β-casein is removed without micellar disintegration or affecting stability towards Ca2+, it is suggested that the β-casein aggregates subsequent to its removal or that some of the pores of casein micelles are sufficiently large to permit diffusion of proteins of this effective molecular size. The decreased stability towards Ca2+ after the removal of additional β-casein may have resulted from the concomitant dissociation of κ-casein. The residual β-casein (approx. 20%) appears to be more strongly bound.

We thank Dr T. C. A. McGann and Professor P. F. Fox for helpful discussion and Mr J. Guiney, B.Sc., who performed the rennin proteolysis experiments.


Possible Role of Cytidine Diphosphate Choline in the Complexing of Carbohydrate to β-Lipoprotein in Liver

By T. J. Delahunt and Sailen Mookerjea. (Banting and Best Department of Medical Research, University of Toronto, Toronto 101, Ont., Canada)

Choline derivatives stimulate the synthesis of both the peptide and the carbohydrate moieties of soluble proteins released by rat liver (Mookerjea, 1971; Mookerjea & Marai, 1971). Since [1,14C]-glucosamine is incorporated into low-density lipoproteins (Mookerjea, Jeng & Black, 1967), it was decided to investigate the effect of choline derivatives on the complexing of carbohydrate to this protein fraction and the possible role that the carbohydrate may play in regulating secretion of the macromolecules.

The complexing of carbohydrate to β-lipoprotein was followed by measuring the incorporation of [1,14C]glucosamine and UDP-N-acetyl[1,14C]glucosamine with rat liver slices and subcellular particles. After dialysis of the incubation media, the β-lipoprotein was precipitated by the Ca2+-heparin method of Jordan, Faulkner & Knoblock (1966). Immunelectrophoresis of the medium β-lipoprotein showed identity with that