The Nervous System

The brain and nervous system form an intricate network of electrical signals that are responsible for coordinating muscles, the senses, speech, memories, thought and emotion.

Several diseases that directly affect the nervous system have a genetic component: some are due to a mutation in a single gene, others are proving to have a more complex mode of inheritance. As our understanding of the pathogenesis of neurodegenerative disorders deepens, common themes begin to emerge: Alzheimer brain plaques and the inclusion bodies found in Parkinson disease contain at least one common component, while Huntington disease, fragile X syndrome and spinocerebellar atrophy are all 'dynamic mutation' diseases in which there is an expansion of a DNA repeat sequence. Apoptosis is emerging as one of the molecular mechanisms invoked in several neurodegenerative diseases, as are other, specific, intracellular signaling events. The biosynthesis of myelin and the regulation of cholesterol traffic also figure in Charcot-Marie-Tooth and Neimann-Pick disease, respectively.
Diseases

Adrenoleukodystrophy
Alzheimer disease
Amyotrophic lateral sclerosis
Angelman syndrome
Ataxia telangiectasia
Charcot-Marie-Tooth syndrome
Cockayne syndrome
Deafness
Duchenne muscular dystrophy
Epilepsy
Essential tremor
Fragile X syndrome
Friedreich’s ataxia
Gaucher disease
Huntington disease
Lesch-Nyhan syndrome
Maple syrup urine disease
Menkes syndrome
Myotonic dystrophy
Narcolepsy
Neurofibromatosis
Niemann-Pick disease
Parkinson disease
Phenylketonuria
Prader-Willi syndrome
Refsum disease
Rett syndrome
Spinal muscular atrophy
Spino cerebellar ataxia
Tangier disease
Tay-Sachs disease
Tuberous sclerosis
Von Hippel-Lindau syndrome
Williams syndrome
Wilson's disease
Zellweger syndrome

Did you know ...?

Unlike humans who can become paralyzed after damage to their spinal cord, fish and frogs can regenerate a severed spinal cord.