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Hidden Markov Models 

Advanced Article 

Abstract 

A hidden Markov model (HMM) is a statistical approach that is frequently used for 
modelling biological sequences. In applying it, a sequence is modelled as an output of a 
discrete stochastic process, which progresses through a series of states that are ‘hidden’ 
from the observer. Each such hidden state emits a symbol representing an elementary 
unit of the modelled data, for example, in case of a protein sequence – an amino-acid.    
The parameters of a hidden Markov model can be estimated by learning from training 
data. Efficient algorithms are available to infer the most likely paths of states for given 
sequence data, which often lead to biological predictions and interpretations. Thanks to 
the well developed theories and algorithms, hidden Markov models have found wide 
applications in diverse areas of computational molecular biology. 

Keywords: HMM; gene finding; profile HMM; training HMM; protein structure prediction; 
epigenetics; phylogenetics 

 

Key Concepts 

•  Hidden Markov model is a statistical approach for modelling sequences with 
broad applications in computational biology. 

•  In an HMM, a biological sequence is modelled as being generated by a stochastic 
process moving from one state to the next state, where each state emits  one 
element of the sequence according to some emission probability distribution  
which, in general, is different in different states. 

• Training of an HMM is a process in which the parameters of the model are 
computed based on a training set of representative examples 

• Overfitting/Overtraining the model occurs when model parameters correctly 
represent the training set but the model cannot generalize the training data to a 
larger set.   

• Gene finding is a process of computational identification of genes, including 
exon/intron structure, in a genome. 

 

 

Introduction  

A hidden Markov model (HMM) is a statistical model, initially developed for speech 
recognition (Rabiner 1989), which has subsequently been used in numerous biological 



sequence analysis applications. Classic applications of HMMs in computational biology 
include, among others, modelling of protein families (Krogh et al. 1994a, Bateman et al. 
2002), gene finding (Krogh, Mian and Haussler 1994b, Burge and Karlin 1997, 
Henderson, Salzberg and Fasman 1997, Lukashin and Borodovsky 1998, Salzberg et al. 
1998), predicting transmembrane helices (Krogh et al. 2001) and tertiary structure 
prediction (Di Francesco, Garnier and Munson 1997a, Bystroff, Thorsson and Baker 
2000). More recent applications include modelling of epigenetic signals, copy number 
variations and molecular evolution, which are described in the last section. 

In biological applications, HMMs are most often used to model sequence data such as  
protein, DNA or RNA sequences, and chromatin structure. The natural ordering of 
elements of sequences allows modelling them as an output of a stochastic process 
progressing through discrete time steps where at each time step, the process generates 
(emits) a symbol (an amino acid, a nucleotide, epigenetiec state etc.). Note that 
properties of a sequence might be different at different positions.  For example, in a 
family of homologous proteins some positions might be conserved, other might be fully 
random, yet other might be biased towards a particular group of amino-acids.  To 
account for such variabilit, an HMM uses a finite number of states, where each state 
defines a specific emission distribution. The transition between states is described as a 
Markov process. Thus the two main components of an HMM are the emission probability 
(defined for each state) and the transition probability describing movements between 
states. HMMs are typically built based on a training set of examples as described in the 
section Construction and Training of an HMM.  

 

Conceptually, HMMs are used in two somewhat different settings each requiring specific 
algorithmic tools. First, given an HMM model that describes a sequence family, say a 
DNA binding domain, one can use it to test if a given query sequence is a member of 
such family. That is, given an HMM M and a sequence S, the question is whether S has 
the property modelled by M. Other example of this type, discussed later in the 
Applications section, is protein fold recognition.  To answer such question one needs to 
compute the probability P[S|M] of sequence S being generated by M. The log of the ratio 
of P[S|M] to the probability of generating S by chance is usually used as a scoring 
function in assessing whether S has the model property.  

The second fundamental application of HHMs to annotate a biological sequence with 
features such as CpG islands, epigenic structure, intron/exon structure etc. (see 
Applications section).  In such cases, an HMM is typically designed so that the states 
correspond to the  modelled features. To annotate the sequence with the features 
included in the model, one needs to establish which states are most likely to generate 
which position of the sequence. 

The subsequent text provides a formal definition of an HMM, describes fundamental 
algorithms used to answer above mentioned questions, methods for designing HMMs, 
and finally surveys most recent applications of HMMs in molecular biology. 

Definitions  
A first-order HMM is defined formally as a 5-tuple M=(Q, , a, s, e), where Q={1, ,n} 
is a finite set of states; ={ 1, , m} is the alphabet, that is, the set of output 
symbols; a is an n×n matrix of transition probabilities defined formally as 



a(i,j)=P[qt+1=j|qt=i], where qt is the state visited at step t; s is an n vector of start 
probabilities, that is, s(i)=P[q0=i]; e is an n×m matrix of emission probabilities defined 
formally as e(i, j)=P[ot= j|qt=i], where ot ∈  is the symbol outputted in step t. 

It is often convenient to have distinguished ‘start’ and ‘end’ states (0 and n+1) that do 
not emit any symbols and remove vector s from the model definition. In the 
considerations below, we make this assumption. An HMM is usually visualized as a 
directed graph with vertices corresponding to the states and directed edges to the pairs 
of states i,j for which transition probability a(i,j) is nonzero. A simple HMM is shown in 
Figure 1. 

 
Figure 1. A simple hidden Markov model. The boxes correspond to states where the emission 
probabilities for each state are given inside each box. The transition probabilities are given above 
the corresponding arrows. Note that there are two state paths that can be used to generate the 
sequence GAGCGCT: 0,1,2,4,4,4,4,6,7 and 0,1,2,3,3,3,3,6,7. The probability of generating the 
sequence using the first path is 1.06×10–4 and using the second path is 1.35×10–7. The probability 
of generating the sequences by the model is the sum of these probabilities. 
 

In a kth order model, the transition and emission probabilities depend on k previous 
steps. Consequently, matrix a is of size nk+1 and matrix e is of size nkm. 

An HMM may generate the same sequence following different state paths (see Figure 1). 
Given an HMM M, sequence S=o1, ,oT and a path of states p=q0q1 qmqT+1, where 
q0=0 and qT+1=n+1, the probability of generating S using path p in model M, P[S, p|M], 
is equal to the following product:  

P[S, p|M] = P[p|M]P[S|p, M] where P[p|M] is the probability of selecting the path p and 
P[S|p,M] the probability of generating sequence S assuming path p. 

0 1 1 2 2 3 1[ | ]  ( , ) ( , ) ( , )... ( , )T TP p M a q q a q q a q q a q q +=
 

1 1 2 2[ | , ]  ( , ) ( , )... ( , )T TP S p M e q o e q o e q o=  

The most likely path of a sequence S in model M is the path pmax that maximizes 
P[S,p|M]. Thus although the states of an HMM generating given sequence data are not 
directly observable, the most likely path provides information about the likely sequence 
of such ‘hidden’ states. 

http://mrw.interscience.wiley.com/emrw/9780470015902/els/article/a0005267/current/html#a0005267-fig-0001


Finally, the probability P[S|M] of generating sequence S by an HMM M is defined as  

[ | ]  [ | , ]
p

P S M P S M p= ∑  

In practical applications, probability values P are replaced with –log P scores. This avoids 
producing numbers that are too small to be represented by a computer. 

Basic Algorithms  
Given an HMM M and a sequence S=o1, ,oT of length T, and assuming that at step 
T+1 the process is in the stop state (n+1) generating empty symbol, the values pmax and 
P[S|M] can be computed using a dynamic programming method. 

Let vk(i) be the most probable path that generates o1, ,oi and ends in state k at step 
i. Obviously,  

max 1 = v ( 1)np T+ +
 

 The recurrence for computing vk(i) is given by the following formula:  

v ( )  ( , ) max  v ( 1) ( , )k i j ji e k o x i a j k= −  

With appropriate initial conditions, the above recurrence provides the basis for an 
O(n2T)-time dynamic programming algorithm known as the Viterbi algorithm. Since the 
number of states n is fixed for the model, the running time of the algorithm depends 
linearly on the length of the input sequence. 

Replacing maximum with summation in the recursive formula for vk(i) yields the 
recurrence for P[S|M]. Namely, let fk(i) denote the probability of generating subsequence 
o1, ,oi using a path that ends in state k at step i. Then,  

( ) = ( , ) ( 1) ( , )k i jj
f i e k o f i a j k−∑  

and  

1[  | ]   ( 1)nP S M f T−= +  

Variable fk(i), called the forward variable, is also used for computing the probability of 
state k at step i, P[qi=k|S,M ]. To compute the last probability, a similar backward 
variable bk(i) is also used. Formally, bk(i) is the probability of generating the 
subsequence oi+1, ,oT using state k as the starting state and the usual ‘end’ state 
n+1. The backward variable is computed similar to the forward variable, but the 
algorithm is executed in the ‘backward’ direction: using the ‘end’ state in the place of the 
‘begin’ state. By definitions of fk(i) and bk(i) it follows that  

[   | , ]   ( ( ) ( )) / [ | ]i k kP q k S M f i b i P S M= =  

Construction and Training of an HMM  



There are two basic steps in building an HMM: designing the directed graph that 
describes the topology of the model (number of states, connections between states); 
and assigning transition and emission probabilities. 

The topology of an HMM is usually designed in an ad hoc way, based on the designer's 
understanding of the modelled sequence. Frequently, such a sequence can be described 
by a ‘grammar’. For example, a simple grammar for a prokaryotic gene can be given as 
S(C)n·E, where S is the start codon, C is any codon different from an end codon, E is an 
end codon and C is repeated n times. In this case, it is natural to design the topology of 
an HMM in a way that follows the grammatical description. In the prokaryotic gene 
example, a topology implied by the simple grammar is shown in Figure 2. The grammar, 
and subsequently a corresponding HMM, for the eukaryotic gene is far more complicated. 
It needs to describe a gene sequence as an interleaving sequence of exons and introns 
taking into account that the splicing can occur at any codon position. 

Figure 2. Topology of a simple 
HMM for prokaryotic gene recognition. In practice, the topology is more complex (e.g. (Krogh et al. 
1994b, Henderson et al. 1997)). 
 

A different approach is taken in designing the so-called profile HMMs for protein families  
(Krogh, Brown et al. 1994). Namely, a universal topology is used and a correct setting of 
parameters elucidates the variations between families. The design includes ‘match’ 
states, ‘insert’ states and silent ‘delete’ states (Figure 3). 

Figure 3. Topology of a profile 
HMM for a sequence family. The states labeled with M correspond to matches, the states labeled 
with I correspond to insertions and (silent) circle states correspond to deletions. (Adopted with 
permission from (Durbin et al. 1998)) 
 

In the second phase of the construction, the transition and emission probabilities are 
assigned to the model. This is done automatically, based on a representative sample of 
sequences called the training set. The computational problem is described formally as 
follows. 



Given a training set S1, ,Sn and a topology of HMM M, find emission and transition 
probabilities that maximize the likelihood that S1, ,Sn are generated by the model. 

The usual assumption is that S1, ,Sn are generated independently and therefore  

1( ,....,  | )   ( | )n ii
P S S M P S M= ∏  

And replacing the probability with –log score we have  

1( ,....,  | )   ( | )n ii
Score S S M Score S M= ∑  

 

The training step is straightforward if for each training sequence Si, the paths of states, 
which the model uses to generate Si, are known. In this case, the training step reduces 
to collecting transition and emission frequencies along these paths. The training step 
becomes more sophisticated if the state paths are unknown. The main strategy in this 
case is to start with some initial probability distribution and then iteratively improve the 
model using the training set. For example, one frequently used method, the Expectation 
Maximization method, approaches this problem as follows: 

1. Assign some initial values to parameters (say uniform probability distribution). 
2. For each sequence in the training set, compute the expected number of times 

each transition/emission is used. This can be done efficiently using the algorithms 
described in the previous section. 

3. Estimate new values of the parameters of the model based on the expected 
values from step 2. 

Repeat steps 2 and 3 until some convergence criterion is reached. It can be shown that 
Expectation Maximization method converges to a local maximum. Other training 
methods include the gradient descent method and simulated annealing. 

One of the fundamental questions that one needs to consider during the training process 
is whether the training set contains enough data to estimate correctly the transition and 
emission probabilities. Lack of data leads to overfitting of the model – the model cannot 
generalize the training data to a larger set. In particular, the question of sufficient data 
needs to be examined when deciding on the order of the model. In principle, a higher 
order model should be more accurate. For example, gene recognition models often are of 
fifth order. (This is the equivalent of keeping memory of two codons.) The number of 
parameters that need to be estimated grows exponentially with the order of the model 
and the possibility of overfitting increases. 

 

Applications 

In the previous sections, we illustrated the concept of HMM using two prominent 
biological applications – modelling of sequence families and gene finding. However 
applications of this modelling technique extend to many other areas of bioinformatics 



that are briefly surveyed in this section. In particular, the Illumina’s sequencing 
technology combined with Chromatin immunoprecipitation technology has lead to 
burgeoning of experimental methods for genome-wide detection of diverse DNA 
properties, often naturally modelled with HMM which we outline below. We also discuss 
applications related to uncovering DNA copy number variations, evolutionary biology and 
protein structure. 

 

HMM- based modelling of chromatin structure and properties of DNA in vivo     

The chromatin immunoprecipitation ("ChIP") followed by microarray technology (Chip-
chip) and the more recent Chromatin immunoprecipitation followed by high-throughput 
sequencing (ChIP-seq) provide experimental methods for performing genome scale 
surveys of chromosome and chromatin properties. The applications of these technologies 
are growing  but a general strategy starts with a protein, P,  that recognizes (or is 
otherwise associated with) a genomic feature of interest, for example a transcription 
factor recognizing DNA binding site. This protein is cross-linked with the DNA site it binds 
to, the cells are lysed, the DNA is sheared, and the genomic positions of DNA fragments 
bound to P identified. While specific procedures are different between the two 
technologies and additionally vary between specific applications, the end result of these 
and related experiments is a mapping of DNA fragments associated with the specific 
signal onto the genome. HMM are increasingly used to interpret such mappings.  

For example, an important application of ChIP-chip and ChIP-seq technologies is 
identification of transcription factor binding sites. Such data can be modelled  with  
simple 2-state model where the two states correspond to “signal enrichment” and 
“background” (Figure 4a) (Li, Meyer and Liu 2005, Humburg, Bulger and Stone 2008, 
Qin et al. 2010). In the genome wide analysis of PRC1 and PRC2 occupancy, Ku et al. 
(Ku et al. 2008) used four states (masked, low density, medium density, and high 
density).  It is important to mention that, unlike profile HMM discussed in the previous 
section, where at each state the HMM is emitting a symbol from a finite alphabet, in 
ChIP-seq experiments the read patterns are considered to be a continuous observation 
and thus the emission probabilities are defined by a probability density function. 

 



 

Figure 4. Two related HMMs modelling two different biological processes. a)  Topology of an HMM 
for recognising of regions with epigenetic makers. The simple HMM model consist with the states: 
enriched region and background regions. B) Topology of a phylogenetic HMM (Siepel et al. 2005) 
for the prediction of conserved genomic elements. The states labeled with C and N corresponding  
to conserved and nonconserved regions respectively. The block of input alignment in the box 
illustrates a conserved region and the corresponding alignment columns are assumed to be 
emitted by state C. 

HMMs are also used to uncover regions of characteristic chromatin structure.  Namely, 
ChIP-seq technology is now routinely applied to survey DNA regions with particular 
modifications of histones.  Designing an HMM so that each state emits signals of several 
types of histone modifications, Won et al. predicted genomic promoters and enhancers 
(Won et al. 2008) and, including PSSM biding pattern, transcription factor biding sites 
(Won, Ren and Wang 2010). In their model, they used HMM with left-to-right topology 
(Rabiner 1989) allowing them to limit possible transition to ensure specific order of 
states and to capture more complex signal patterns. Since chromatin structure is 
dynamic and depends on tissue and conditions, HMM-based methods have been also 
applied to genome-wide identification of such differences (Xu et al. 2008). 

In the context of modelling of chromatin structure, HMM have also some shortcomings. 
Note that the length distribution of “enriched” and “background” intervals from model in 
Figure 4 is geometric, but it is not necessarily the case in real data. Furthermore some 
observations might be missing. Therefore Lian et al. in their approach to modeling 
chromatin structure used a generalization of HMM allowing for including length 
distribution in the model (Lian et al. 2008). Chen et al. (Chen et al. 2010) accounted for 
missing information by generalizing HMM to a Bayesian network model. 

 

Detection of Copy Number Variation 

Copy number variations (CNV) are  duplication or deletion of a DNA segment compared 
to a reference genome, and have  been found to be common in human genome. Such 
variations might be responsible for a significant proportion of phenotypic variations 
(Freeman et al. 2006). HMMs have been used in detecting CNV from single nucleotide 
polymorphism (SNP) genotyping data (Colella et al. 2007, Wang et al. 2007). In this 
case, the input data are two measures of genotype signal at each SNP: the log R Ratio 
(normalized total signal intensity) and the B Allele Frequency (normalized allelic intensity 
ratio). The hidden states are the unknown copy number at each SNP. The design of 
HMMs takes into account the state of homozygosity, distance between consecutive SNPs, 
etc. The most likely state path computed by the Viterbi algorithm implies the predicted 
regions of copy number gain or loss. Likewise, an HMM has been developed to detect 
CNVs from short read sequence data (Simpson et al. 2010). 

 

Molecular Evolution 

In the aforementioned applications of HMM, the input data are mostly single sequences, 
on which HMMs are used to predict the probabilistic distribution in space (along the 



sequences). When applying HMMs to molecular evolution, we need to consider the 
dimension of time. A combination of HMMs and phylogenetic models, phylogenetic 
hidden Markov models (phylo-HMMs) were originally proposed to improve phylogenetic 
inference using HMMs to capture the variation of substitution rates among sites (Yang 
1995, Felsenstein and Churchill 1996, Siepel and Haussler 2005). In a phylo-HMM, the 
input is a multiple sequence alignment; each state corresponds to a phylogenetic model, 
and at each time step it emits a new column in the input alignment, with probability 
determined by the associated phylogeny.  

The phylo-HMMs have been used to identify conserved elements from multiple 
alignments of vertebrate genomes (Siepel et al. 2005) as shown in Figure 4b. The model 
consists of two states, for conserved and nonconserved regions, each associated with a 
phylogeny. The two phylogenies have identical topology but the conserved tree has 
shorter branches, which models the smaller substitution rate in conserved regions than 
the average rate in nonconserved regions. Other applications of phylo-HMM include 
comparative gene prediction (Pedersen and Hein 2003), detection of selection (Siepel, 
Pollard and Haussler 2006) and recombination (Husmeier and Wright 2001).  

As a natural extension of phylo-HMM, a class of HMMs called population genetic hidden 
Markov models (popGenHMMs) has been developed (Kern and Haussler 2010). Input of 
popGenHMMs are sequence polymorphisms (say SNPs), and each hidden state 
corresponds to a population genetic model. The object emitted at a time step is the allele 
frequency at a SNP. Several popGenHMMs have been developed to detect genomic 
regions under selection (Boitard, Schlotterer and Futschik 2009, Kern and Haussler 
2010). 

 

Protein Structure Analysis 

Following successful applications of HMMs in sequence analysis, this modelling technique 
has been also applied to recognizing and predicting protein 3D structures and/or motifs.  
One of the first applications of HMMs in the field of protein was to model transmembrane 
helices (Sonnhammer, von Heijne and Krogh 1998). This effort was quickly followed by 
HMM models to predict topology of transmembrane helical proteins (Zhou and Zhou 
2003) and transmebrane β-barrels (Martelli et al. 2002, Bagos et al. 2004). In such 
models dedicated to predicting specific 3D structure, a state of the model often 
corresponds to a position of amino-acid in the structure.  
 
HMM are also used for general structure prediction.  For example, following previous 
HMM-based approaches incorporating prediction of secondary structure information (Di 
Francesco et al. 1997b, Karchin et al. 2003, Hargbo and Elofsson 1999), Karchin et al. 
proposed an HMM that emits a pair of symbols: one is an amino acid and the other a 
secondary structure assignment (Karchin et al. 2003). This approach and its subsequent 
refinements provided a series of successful fold prediction programs (e.g. (Karplus 
2009)). HMMs have been also used to model structural biases of amino acids (Razzaki 
and Bukhari 1975, Li et al. 2008). A different idea has been explored by proteins 
structure prediction program HMMSTR (Bystroff et al. 2000). In the heart of this 
approach was designing a hidden Markov model by merging HMM models trained on 
structural motifs (I-sites), where each state contained information about the sequence 
and structure attributes of an individual position in the motif.  
 



Given non-linear nature of protein 3D structure, topologies of HMMs designed to model 
protein structure tend to be more complicated than that of HMMs modelling sequence 
features. For example, HMMSTR has a highly branched topology. 

Summary 

Hidden Markov Models have proven to be widely applicable to modelling of diverse 
biological data. They are relatively simple, supported by well developed theory and 
algorithms and frequently lead to very intuitive and informative models. 
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